Advertisements
Advertisements
प्रश्न
Solve the following simultaneous equation.
x − 2y = −2 ; x + 2y = 10
उत्तर
x − 2y = −2 ...(I)
x + 2y = 10 ...(II)
Adding (I) and (II)
x − 2y = −2
+ x + 2y = 10
2x = 8
⇒ x = 4
Putting the value of x in (I) we get
∴ x - 2y = −2
⇒ 4 − 2y = −2
⇒ −2y = −6
⇒ y = 3
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations by applying the method of elimination by equating the coefficients
(i)4x – 3y = 4
2x + 4y = 3
(ii)5x – 6y = 8
3x + 2y = 6
Solve the following system of equations: 15x + 4y = 61; 4x + 15y = 72
Solve the following system of equations by using the method of elimination by equating the co-efficients.
`\frac { x }{ y } + \frac { 2y }{ 5 } + 2 = 10; \frac { 2x }{ 7 } – \frac { 5 }{ 2 } + 1 = 9`
Solve the following pair of linear equation by the elimination method and the substitution method.
`x/2 + (2y)/3 = -1 and x - y /3 = 3`
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes `1/2` if we only add 1 to the denominator. What is the fraction?
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.
Sanjay gets fixed monthly income. Every year there is a certain increment in his salary. After 4 years, his monthly salary was Rs. 4500 and after 10 years his monthly salary became 5400 rupees, then find his original salary and yearly increment.
A fraction becomes `(1)/(3)` when 2 is subtracted from the numerator and it becomes `(1)/(2)` when 1 is subtracted from the denominator. Find the fraction.
Difference between two numbers is 3. The sum of three times the bigger number and two times the smaller number is 19. Then find the numbers
The angles of a cyclic quadrilateral ABCD are ∠A = (6x + 10)°, ∠B = (5x)°, ∠C = (x + y)°, ∠D = (3y – 10)°. Find x and y, and hence the values of the four angles.