Advertisements
Advertisements
Question
Solve the following simultaneous equation.
x − 2y = −2 ; x + 2y = 10
Solution
x − 2y = −2 ...(I)
x + 2y = 10 ...(II)
Adding (I) and (II)
x − 2y = −2
+ x + 2y = 10
2x = 8
⇒ x = 4
Putting the value of x in (I) we get
∴ x - 2y = −2
⇒ 4 − 2y = −2
⇒ −2y = −6
⇒ y = 3
APPEARS IN
RELATED QUESTIONS
Solve for x and y : `\frac { ax }{ b } – \frac { by }{ a } = a + b ; ax – by = 2ab`
Solve the following pair of linear equation by the elimination method and the substitution method:
x + y = 5 and 2x – 3y = 4
Solve the following pair of linear equation by the elimination method and the substitution method.
3x – 5y – 4 = 0 and 9x = 2y + 7
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
Meena went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 she received.
Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. The bus travels with an average speed of 60 km/hr and the average speed of the aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.
Sanjay gets fixed monthly income. Every year there is a certain increment in his salary. After 4 years, his monthly salary was Rs. 4500 and after 10 years his monthly salary became 5400 rupees, then find his original salary and yearly increment.
Ajay is younger than Vijay by 5 years. Sum of their ages is 25 years. What is Ajay's age?
Complete the following table to draw the graph of 3x − 2y = 18
x | 0 | 4 | 2 | −1 |
y | − 9 | ______ | ______ | ______ |
(x, y) | (0, −9) | (______, _______) | (______, _______) | ______ |
The angles of a triangle are x, y and 40°. The difference between the two angles x and y is 30°. Find x and y.
The angles of a cyclic quadrilateral ABCD are ∠A = (6x + 10)°, ∠B = (5x)°, ∠C = (x + y)°, ∠D = (3y – 10)°. Find x and y, and hence the values of the four angles.