Advertisements
Advertisements
Question
Sanjay gets fixed monthly income. Every year there is a certain increment in his salary. After 4 years, his monthly salary was Rs. 4500 and after 10 years his monthly salary became 5400 rupees, then find his original salary and yearly increment.
Solution
Let the fixed monthly income be Rs x.
Annual increment be Rs y.
After 4 years, his monthly salary was Rs. 4500
Monthly salary + annual increment of 4 years = 4500
x + 4y = 4500 ...(I)
After 10 years his monthly salary became 5400 rupees
Monthly salary + annual increment of 10 years = 5400
x + 10y = 5400 ...(II)
Subtracting I from II
x + 4y = 4500
x + 10y = 5400
− − −
−6y = −900
∴ y = 150
put y = 150 in equation (I)
x + 4y = 4500
x + 4 × 150 = 4500
x + 600 = 4500
x = 4500 - 600
x = 3900
Thus, the monthly salary = Rs. 3900
Annual increment = Rs.150
APPEARS IN
RELATED QUESTIONS
Solve the following system of linear equations by using the method of elimination by equating the coefficients √3x – √2y = √3 = ; √5x – √3y = √2
Solve the following pair of linear equation by the elimination method and the substitution method:
3x + 4y = 10 and 2x – 2y = 2
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes `1/2` if we only add 1 to the denominator. What is the fraction?
The sum of a two-digit number and the number formed by reversing the order of digit is 66. If the two digits differ by 2, find the number. How many such numbers are there?
Ajay is younger than Vijay by 5 years. Sum of their ages is 25 years. What is Ajay's age?
If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.
By equating coefficients of variables, solve the following equation.
5x + 7y = 17 ; 3x - 2y = 4
By equating coefficients of variables, solve the following equation.
4x + y = 34 ; x + 4y = 16
The length of the rectangle is 5 more than twice its breadth. The perimeter of a rectangle is 52 cm, then find the length of the rectangle
The solution of the equation ax + by + 5 = 0 and bx − ay − 12 = 0 is (2, – 3). Find the values of a and b