English

Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method: If we add 1 to the numerator and subtract 1 from the denominator, - Mathematics

Advertisements
Advertisements

Question

Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:

If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes `1/2` if we only add 1 to the denominator. What is the fraction?

Sum

Solution

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is `x/y`

If 1 is added to the numerator and 1 is subtracted from the denominator, the fraction becomes 1. Thus, we have

`(x + 1)/(x - y)=1`

⇒ x + 1 = y - 1

⇒ x - y = -2       ...(i)

If 1 is added to the denominator, the fraction becomes `1/2`. Thus, we have

`x/(y + 1)=1/2`

`x = 1/2 (y + 1)`

`x - y/2 = 1/2`         ...(ii)

By subtracting (2) from (1) we have

`x - y - x + y/2=-2 - 1/2`

⇒ `-y + y/2=-2 - 1/2`

⇒ `-1/2y = -5/2`

⇒ y = 5

Now, putting y = 5 in (ii), we have 

`x - 5/2 = 1/2`

`x = 1/2 + 5/2`

`x=6/2`

x = 3

Thus, x = 3 and y = 5

Hence, the required fraction = `3/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Pair of Linear Equations in Two Variables - Exercise 3.4 [Page 57]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 3 Pair of Linear Equations in Two Variables
Exercise 3.4 | Q 2.1 | Page 57
RD Sharma Mathematics [English] Class 10
Chapter 3 Pair of Linear Equations in Two Variables
Exercise 3.8 | Q 4 | Page 89

RELATED QUESTIONS

Solve the following system of linear equations by using the method of elimination by equating the coefficients √3x – √2y = √3 = ; √5x – √3y = √2


Solve the following pair of linear equation by the elimination method and the substitution method:

x + y = 5 and 2x – 3y = 4


Solve the following pair of linear equation by the elimination method and the substitution method: 

3x + 4y = 10 and 2x – 2y = 2


Solve the following pair of linear equation by the elimination method and the substitution method.

3x – 5y – 4 = 0 and 9x = 2y + 7


Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:

Meena went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 she received.


Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:

A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.


If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.


Solve the following simultaneous equation.

x - 2y = -1 ; 2x - y = 7


Solve the following simultaneous equation.

x + y = 11 ; 2x - 3y = 7 


Solve the following simultaneous equation.

x − 2y = −2 ; x + 2y = 10 


Solve the following simultaneous equation.

`x/3 + 5y = 13 ; 2x + y/2 = 19`


By equating coefficients of variables, solve the following equation.

5x + 7y = 17 ; 3x - 2y = 4


A fraction becomes `1/3` when 2 is subtracted from the numerator and it becomes `1/2` when 1 is subtracted from the denominator. Find the fraction.


The difference between an angle and its complement is 10° find measure of the larger angle.


Complete the following table to draw the graph of 3x − 2y = 18

x 0 4 2 −1
y − 9 ______ ______ ______
(x, y) (0, −9) (______, _______) (______, _______) ______

The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.

Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.

∴ The number = 10x + y

∴ The number obtained by interchanging the digits = `square`

∴ The sum of the number and the number obtained by interchanging the digits = 132

∴ 10x + y + 10y + x = `square`

∴ x + y = `square`      .....(i)

By second condition,

Digit in the ten’s place = digit in the unit’s place + 2

∴ x – y = 2     ......(ii)

Solving equations (i) and (ii)

∴ x = `square`, y = `square`

Ans: The original number = `square`


The angles of a triangle are x, y and 40°. The difference between the two angles x and y is 30°. Find x and y.


Evaluate: (1004)3


Read the following passage:

Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.

Based on the above information, answer the following questions:

  1. Represent the following information algebraically (in terms of x and y).
  2. (a) What is the prize amount for hockey?
    OR
    (b) Prize amount on which game is more and by how much?
  3. What will be the total prize amount if there are 2 students each from two games?

Rehana went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Rehana got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 did she received.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×