Advertisements
Advertisements
Question
Read the following passage:
Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.![]() |
Based on the above information, answer the following questions:
- Represent the following information algebraically (in terms of x and y).
- (a) What is the prize amount for hockey?
OR
(b) Prize amount on which game is more and by how much? - What will be the total prize amount if there are 2 students each from two games?
Solution
i. Given, Hockey ₹ x per student and Cricket ₹ y per students
∴ Algebraic equations are
5x + 4y = 9500 ...(i)
and 4x + 3y = 7370 ...(ii)
ii. (a) Multiply by 3 in equation (i) and by 4 in equation (ii)
15x + 12y = 28,500 ...(iii)
16x + 12y = 29480 ...(iv)
On subtracting equation (iii) from equation (iv), we get
x = 980
∴ Prize amount for hockey = ₹ 980
OR
(b) Now, put this value in equation (i), we get
5 × 980 + 4y = 9500
`\implies` 4y = 9500 – 4900 = 4600
`\implies` y = 1150
∴ Prize amount for cricket = ₹ 1150
Difference = 1150 – 980 = 170
∴ Prize amount for cricket is ₹ 170 more than hockey.
iii. Total prize amount for 2 students each from two games
= 2x + 2y
= 2(x + y)
= 2(980 + 1150)
= 2 × 2130
= ₹ 4260
APPEARS IN
RELATED QUESTIONS
Solve the following system of linear equations by using the method of elimination by equating the coefficients: 3x + 4y = 25 ; 5x – 6y = – 9
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
Meena went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 she received.
In an envelope there are some 5 rupee notes and some 10 rupee notes. Total amount of these notes together is 350 rupees. Number of 5 rupee notes are less by 10 than twice number of 10 rupee notes. Then find the number of 5 rupee and 10 rupee notes.
The sum of the digits in a two-digits number is 9. The number obtained by interchanging the digits exceeds the original number by 27. Find the two-digit number.
If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.
Solve the following simultaneous equation.
`2/x + 3/y = 13` ; `5/x - 4/y = -2`
The difference between an angle and its complement is 10° find measure of the larger angle.
The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.
Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.
∴ The number = 10x + y
∴ The number obtained by interchanging the digits = `square`
∴ The sum of the number and the number obtained by interchanging the digits = 132
∴ 10x + y + 10y + x = `square`
∴ x + y = `square` .....(i)
By second condition,
Digit in the ten’s place = digit in the unit’s place + 2
∴ x – y = 2 ......(ii)
Solving equations (i) and (ii)
∴ x = `square`, y = `square`
Ans: The original number = `square`
Solve: 99x + 101y = 499, 101x + 99y = 501
The ratio of two numbers is 2:3. If 5 is added in each numbers, then the ratio becomes 5:7 find the numbers.
The ratio of two numbers is 2:3.
So, let the first number be 2x and the second number be `square`.
From the given condition,
`((2x) + square)/(square + square) = square/square`
`square (2x + square) = square (square + square)`
`square + square = square + square`
`square - square = square - square`
`- square = - square`
x = `square`
So, The first number = `2 xx square = square`
and, Second number = `3 xx square = square`
Hence, the two numbers are `square` and `square`