Advertisements
Advertisements
Question
Solve the following simultaneous equation.
x + y = 11 ; 2x - 3y = 7
Solution
x + y = 11 ...(I)
2x - 3y = 7 ...(II)
Multiply (I) with 3
3x + 3y = 33 ...(III)
Adding (II) and (III)
2x - 3y = 7
3x + 3y = 33
+
5x = 40
x = `40/5`
⇒ x = 8
Putting the value of x in (I)
8 + y = 11
y = 11 - 8
⇒ y = 3
APPEARS IN
RELATED QUESTIONS
Solve for x and y : `\frac { ax }{ b } – \frac { by }{ a } = a + b ; ax – by = 2ab`
Solve the following pair of linear equation by the elimination method and the substitution method:
x + y = 5 and 2x – 3y = 4
Solve the following pair of linear equation by the elimination method and the substitution method:
3x + 4y = 10 and 2x – 2y = 2
Ajay is younger than Vijay by 5 years. Sum of their ages is 25 years. What is Ajay's age?
If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.
Solve the following simultaneous equation.
`x/3 + y/4 = 4; x/2 - y/4 = 1`
By equating coefficients of variables, solve the following equation.
x − 2y = −10 ; 3x − 5y = −12
If 52x + 65y = 183 and 65x + 52y = 168, then find x + y = ?
Evaluate: (1004)3
Rehana went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Rehana got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 did she received.