English

Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method: A lending library has a fixed charge for the first three days - Mathematics

Advertisements
Advertisements

Question

Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:

A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.

Sum

Solution

Let the fixed charge for the first three days and each day charge thereafter be Rs x and Rs y, respectively.

According to the question,

x + 4y = 27              ...(1)

The charge for keeping a book for five days is ₹ 2.

x + 2y = 21             ...(2)

By subtracting equation (2) from equation (1)

(x + 4y = 24) - (x + 2y = 21)

y = 3

Putting the value of y in equation (1)

x = 15

Hence, the fixed charge is ₹ 15 and the charge for the additional day is ₹ 3.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Pair of Linear Equations in Two Variables - Exercise 3.4 [Page 57]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 3 Pair of Linear Equations in Two Variables
Exercise 3.4 | Q 2.5 | Page 57
RD Sharma Mathematics [English] Class 10
Chapter 3 Pair of Linear Equations in Two Variables
Exercise 3.6 | Q 10 | Page 79

RELATED QUESTIONS

Solve the following system of linear equations by applying the method of elimination by equating the coefficients

(i)4x – 3y = 4 

2x + 4y = 3

(ii)5x – 6y = 8

3x + 2y = 6


Solve the following system of equations by using the method of elimination by equating the co-efficients.

`\frac { x }{ y } + \frac { 2y }{ 5 } + 2 = 10; \frac { 2x }{ 7 } – \frac { 5 }{ 2 } + 1 = 9`


Solve the following system of linear equations :

2(ax – by) + (a + 4b) = 0

2(bx + ay) + (b – 4a) = 0


Solve the following pair of linear equation by the elimination method and the substitution method: 

3x + 4y = 10 and 2x – 2y = 2


Solve the following pair of linear equation by the elimination method and the substitution method.

`x/2 + (2y)/3 = -1 and x - y /3 = 3`


Form the pair of linear equation in the following problem, and find its solutions (if they exist) by the elimination method:

Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?


Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:

The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.


The sum of a two-digit number and the number formed by reversing the order of digit is 66. If the two digits differ by 2, find the number. How many such numbers are there?


If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.


Solve the following simultaneous equation.

x + y = 11 ; 2x - 3y = 7 


By equating coefficients of variables, solve the following equation.

4x + y = 34 ; x + 4y = 16 


A fraction becomes `(1)/(3)` when 2 is subtracted from the numerator and it becomes `(1)/(2)` when 1 is subtracted from the denominator. Find the fraction.


Complete the activity.


Difference between two numbers is 3. The sum of three times the bigger number and two times the smaller number is 19. Then find the numbers


The angles of a cyclic quadrilateral ABCD are ∠A = (6x + 10)°, ∠B = (5x)°, ∠C = (x + y)°, ∠D = (3y – 10)°. Find x and y, and hence the values of the four angles. 


Evaluate: (1004)3


A 2-digit number is such that the product of its digits is 24. If 18 is subtracted from the number, the digits interchange their places. Find the number.


Read the following passage:

Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.

Based on the above information, answer the following questions:

  1. Represent the following information algebraically (in terms of x and y).
  2. (a) What is the prize amount for hockey?
    OR
    (b) Prize amount on which game is more and by how much?
  3. What will be the total prize amount if there are 2 students each from two games?

Rehana went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Rehana got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 did she received.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×