Advertisements
Advertisements
प्रश्न
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.
उत्तर
Let the fixed charge for the first three days and each day charge thereafter be Rs x and Rs y, respectively.
According to the question,
x + 4y = 27 ...(1)
The charge for keeping a book for five days is ₹ 2.
x + 2y = 21 ...(2)
By subtracting equation (2) from equation (1)
(x + 4y = 24) - (x + 2y = 21)
y = 3
Putting the value of y in equation (1)
x = 15
Hence, the fixed charge is ₹ 15 and the charge for the additional day is ₹ 3.
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations by using the method of elimination by equating the coefficients: 3x + 4y = 25 ; 5x – 6y = – 9
Solve the following system of linear equations by using the method of elimination by equating the coefficients √3x – √2y = √3 = ; √5x – √3y = √2
Solve the following pair of linear equation by the elimination method and the substitution method.
`x/2 + (2y)/3 = -1 and x - y /3 = 3`
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes `1/2` if we only add 1 to the denominator. What is the fraction?
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
Meena went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 she received.
Two types of boxes A, B are to be placed in a truck having a capacity of 10 tons. When 150 boxes of type A and 100 boxes of type B are loaded in the truck, it weighes 10 tons. But when 260 boxes of type A are loaded in the truck, it can still accommodate 40 boxes of type B, so that it is fully loaded. Find the weight of each type of box.
Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. The bus travels with an average speed of 60 km/hr and the average speed of the aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.
Solve the following simultaneous equation.
2x - y = 5 ; 3x + 2y = 11
Solve the following simultaneous equation.
`2/x + 3/y = 13` ; `5/x - 4/y = -2`
By equating coefficients of variables, solve the following equations.
3x - 4y = 7; 5x + 2y = 3
By equating coefficients of variables, solve the following equation.
5x + 7y = 17 ; 3x - 2y = 4
By equating coefficients of variables, solve the following equation.
x − 2y = −10 ; 3x − 5y = −12
The difference between an angle and its complement is 10° find measure of the larger angle.
Complete the following table to draw the graph of 3x − 2y = 18
x | 0 | 4 | 2 | −1 |
y | − 9 | ______ | ______ | ______ |
(x, y) | (0, −9) | (______, _______) | (______, _______) | ______ |
The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.
Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.
∴ The number = 10x + y
∴ The number obtained by interchanging the digits = `square`
∴ The sum of the number and the number obtained by interchanging the digits = 132
∴ 10x + y + 10y + x = `square`
∴ x + y = `square` .....(i)
By second condition,
Digit in the ten’s place = digit in the unit’s place + 2
∴ x – y = 2 ......(ii)
Solving equations (i) and (ii)
∴ x = `square`, y = `square`
Ans: The original number = `square`
Difference between two numbers is 3. The sum of three times the bigger number and two times the smaller number is 19. Then find the numbers
Solve: 99x + 101y = 499, 101x + 99y = 501
The length of the rectangle is 5 more than twice its breadth. The perimeter of a rectangle is 52 cm, then find the length of the rectangle
The sum of the digits of a two-digit number is 9. If 27 is added to it, the digits of the number get reversed. The number is ______.