Advertisements
Advertisements
प्रश्न
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
Meena went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 she received.
उत्तर
Let the number of ₹ 50 notes = x
The number of 100 rupees notes = y
According to the condition,
Total number of notes 25
x + y = 25 ...(1)
50x + 100y = 2000
x + 2y = 40 ...(2)
Subtracting equation (1) from (2), we get
x + 2y - x - y
y = 40 - 25
y = 15
Putting y = 15 in (1),
x + 15 = 25
x = 25 - 15
x = 10
Thus, x = 10 and y = 15
∴ Number of 50 rupees notes = 10 and number of 100 rupees notes = 15
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations by applying the method of elimination by equating the coefficients
(i)4x – 3y = 4
2x + 4y = 3
(ii)5x – 6y = 8
3x + 2y = 6
Solve the following system of equations: 15x + 4y = 61; 4x + 15y = 72
Solve for x and y : `\frac { ax }{ b } – \frac { by }{ a } = a + b ; ax – by = 2ab`
Solve (a – b) x + (a + b) y = `a^2 – 2ab – b^2 (a + b) (x + y) = a^2 + b^2`
Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. The bus travels with an average speed of 60 km/hr and the average speed of the aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.
Sanjay gets fixed monthly income. Every year there is a certain increment in his salary. After 4 years, his monthly salary was Rs. 4500 and after 10 years his monthly salary became 5400 rupees, then find his original salary and yearly increment.
Solve the following simultaneous equation.
2x - y = 5 ; 3x + 2y = 11
Solve the following simultaneous equation.
x − 2y = −2 ; x + 2y = 10
By equating coefficients of variables, solve the following equation.
5x + 7y = 17 ; 3x - 2y = 4
By equating coefficients of variables, solve the following equation.
4x + y = 34 ; x + 4y = 16
If 52x + 65y = 183 and 65x + 52y = 168, then find x + y = ?
The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.
Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.
∴ The number = 10x + y
∴ The number obtained by interchanging the digits = `square`
∴ The sum of the number and the number obtained by interchanging the digits = 132
∴ 10x + y + 10y + x = `square`
∴ x + y = `square` .....(i)
By second condition,
Digit in the ten’s place = digit in the unit’s place + 2
∴ x – y = 2 ......(ii)
Solving equations (i) and (ii)
∴ x = `square`, y = `square`
Ans: The original number = `square`
Solve: 99x + 101y = 499, 101x + 99y = 501
The semi perimeter of a rectangular shape garden is 36 m. The length of the garden is 4 m more than its breadth. Find the length and the breadth of the garden
Read the following passage:
Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.![]() |
Based on the above information, answer the following questions:
- Represent the following information algebraically (in terms of x and y).
- (a) What is the prize amount for hockey?
OR
(b) Prize amount on which game is more and by how much? - What will be the total prize amount if there are 2 students each from two games?