Advertisements
Advertisements
प्रश्न
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.
उत्तर
Let the fixed charge for the first three days and each day charge thereafter be Rs x and Rs y, respectively.
According to the question,
x + 4y = 27 ...(1)
The charge for keeping a book for five days is ₹ 2.
x + 2y = 21 ...(2)
By subtracting equation (2) from equation (1)
(x + 4y = 24) - (x + 2y = 21)
y = 3
Putting the value of y in equation (1)
x = 15
Hence, the fixed charge is ₹ 15 and the charge for the additional day is ₹ 3.
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations by applying the method of elimination by equating the coefficients
(i)4x – 3y = 4
2x + 4y = 3
(ii)5x – 6y = 8
3x + 2y = 6
Solve the following system of equations by using the method of elimination by equating the co-efficients.
`\frac { x }{ y } + \frac { 2y }{ 5 } + 2 = 10; \frac { 2x }{ 7 } – \frac { 5 }{ 2 } + 1 = 9`
Solve for x and y : `\frac { ax }{ b } – \frac { by }{ a } = a + b ; ax – by = 2ab`
Solve (a – b) x + (a + b) y = `a^2 – 2ab – b^2 (a + b) (x + y) = a^2 + b^2`
Solve the following pair of linear equation by the elimination method and the substitution method.
3x – 5y – 4 = 0 and 9x = 2y + 7
Form the pair of linear equation in the following problem, and find its solutions (if they exist) by the elimination method:
Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
Meena went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 she received.
Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. The bus travels with an average speed of 60 km/hr and the average speed of the aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.
The sum of a two-digit number and the number formed by reversing the order of digit is 66. If the two digits differ by 2, find the number. How many such numbers are there?
If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.
Solve the following simultaneous equation.
`x/3 + y/4 = 4; x/2 - y/4 = 1`
Solve the following simultaneous equation.
`x/3 + 5y = 13 ; 2x + y/2 = 19`
A fraction becomes `(1)/(3)` when 2 is subtracted from the numerator and it becomes `(1)/(2)` when 1 is subtracted from the denominator. Find the fraction.
The difference between an angle and its complement is 10° find measure of the larger angle.
The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.
Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.
∴ The number = 10x + y
∴ The number obtained by interchanging the digits = `square`
∴ The sum of the number and the number obtained by interchanging the digits = 132
∴ 10x + y + 10y + x = `square`
∴ x + y = `square` .....(i)
By second condition,
Digit in the ten’s place = digit in the unit’s place + 2
∴ x – y = 2 ......(ii)
Solving equations (i) and (ii)
∴ x = `square`, y = `square`
Ans: The original number = `square`
Solve: 99x + 101y = 499, 101x + 99y = 501
The solution of the equation ax + by + 5 = 0 and bx − ay − 12 = 0 is (2, – 3). Find the values of a and b
The semi perimeter of a rectangular shape garden is 36 m. The length of the garden is 4 m more than its breadth. Find the length and the breadth of the garden
The angles of a cyclic quadrilateral ABCD are ∠A = (6x + 10)°, ∠B = (5x)°, ∠C = (x + y)°, ∠D = (3y – 10)°. Find x and y, and hence the values of the four angles.