Advertisements
Advertisements
प्रश्न
If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.
उत्तर
Let the length of the rectangle be ‘x’ units and the breadth of the rectangle be ‘y’ units.
Area of the rectangle = xy sq. units
length of the rectangle is reduced by 5 units
∴ length = x – 5
breadth of the rectangle is increased by 3 units
∴ breadth = y + 3
area of the rectangle is reduced by 9 square units
∴ area of the rectangle = xy – 9
According to the first condition,
(x – 5) (y + 3) = xy – 9
∴ xy + 3x – 5y – 15 = xy – 9
∴ 3x – 5y = -9 + 15
∴ 3x – 5y = 6 ...(i)
length of the rectangle is reduced by 3 units
∴ length = x – 3
breadth of the rectangle is increased by 2 units
∴ breadth = y + 2
area of the rectangle is increased by 67 square units
∴ area of the rectangle = xy + 61
According to the second condition,
(x – 3) (y + 2) = xy + 67
∴ xy + 2x – 3y – 6 = xy + 67
∴ 2x – 3y = 67 + 6
∴ 2x – 3y = 73 ...(ii)
Multiplying equation (i) by 3,
9x – 15y = 18 ...(iii)
Multiplying equation (ii) by 5,
10x – 15y = 365 ...(iv)
Subtracting equation (iii) from (iv),
10x – 15y = 365
9x – 15y = 18
- + -
x = 347
Substituting x = 347 in equation (ii),
2x – 3y = 73
∴ 2(347) – 3y = 73
∴ 694 – 73 = 3y
∴ 621 = 3y
∴ y = `621/3`
∴ y = 207
∴ The length and breadth of rectangle are 347 units and 207 units respectively.
Notes
There should be a printing mistake in the textbook because in the question, if "less than 9 square units" is taken, then only the answer given in the textbook will come.
APPEARS IN
संबंधित प्रश्न
Solve the following system of equations: 15x + 4y = 61; 4x + 15y = 72
Solve for x and y : `\frac { ax }{ b } – \frac { by }{ a } = a + b ; ax – by = 2ab`
Solve the following pair of linear equation by the elimination method and the substitution method.
3x – 5y – 4 = 0 and 9x = 2y + 7
Two types of boxes A, B are to be placed in a truck having a capacity of 10 tons. When 150 boxes of type A and 100 boxes of type B are loaded in the truck, it weighes 10 tons. But when 260 boxes of type A are loaded in the truck, it can still accommodate 40 boxes of type B, so that it is fully loaded. Find the weight of each type of box.
The sum of a two-digit number and the number formed by reversing the order of digit is 66. If the two digits differ by 2, find the number. How many such numbers are there?
Solve the following simultaneous equation.
`x/3 + y/4 = 4; x/2 - y/4 = 1`
By equating coefficients of variables, solve the following equations.
3x - 4y = 7; 5x + 2y = 3
By equating coefficients of variables, solve the following equation.
x − 2y = −10 ; 3x − 5y = −12
The solution of the equation ax + by + 5 = 0 and bx − ay − 12 = 0 is (2, – 3). Find the values of a and b
The angles of a triangle are x, y and 40°. The difference between the two angles x and y is 30°. Find x and y.