मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ९ वी

If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. - Algebra

Advertisements
Advertisements

प्रश्न

If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.

बेरीज

उत्तर

Let the length of the rectangle be ‘x’ units and the breadth of the rectangle be ‘y’ units.

Area of the rectangle = xy sq. units

length of the rectangle is reduced by 5 units

∴ length = x – 5

breadth of the rectangle is increased by 3 units

∴ breadth = y + 3

area of the rectangle is reduced by 9 square units

∴ area of the rectangle = xy – 9

According to the first condition,

(x – 5) (y + 3) = xy – 9

∴ xy + 3x – 5y – 15 = xy – 9

∴ 3x – 5y = -9 + 15

∴ 3x – 5y = 6   ...(i)

length of the rectangle is reduced by 3 units

∴ length = x – 3

breadth of the rectangle is increased by 2 units

∴ breadth = y + 2

area of the rectangle is increased by 67 square units

∴ area of the rectangle = xy + 61

According to the second condition,

(x – 3) (y + 2) = xy + 67

∴ xy + 2x – 3y – 6 = xy + 67

∴ 2x – 3y = 67 + 6

∴ 2x – 3y = 73   ...(ii)

Multiplying equation (i) by 3,

9x – 15y = 18   ...(iii)

Multiplying equation (ii) by 5,

10x – 15y = 365   ...(iv)

Subtracting equation (iii) from (iv),

10x – 15y = 365
9x – 15y = 18        
-     +           -           
  x    =     347

Substituting x = 347 in equation (ii),

2x – 3y = 73

∴ 2(347) – 3y = 73

∴ 694 – 73 = 3y

∴ 621 = 3y

∴ y = `621/3`

∴ y = 207

∴ The length and breadth of rectangle are 347 units and 207 units respectively.

shaalaa.com

Notes

There should be a printing mistake in the textbook because in the question, if "less than 9 square units" is taken, then only the answer given in the textbook will come.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Linear Equations in Two Variables - Problem Set 5 [पृष्ठ ९२]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
पाठ 5 Linear Equations in Two Variables
Problem Set 5 | Q (8) | पृष्ठ ९२

संबंधित प्रश्‍न

Solve the following system of linear equations by using the method of elimination by equating the coefficients: 3x + 4y = 25 ; 5x – 6y = – 9


Solve the following pair of linear equation by the elimination method and the substitution method.

`x/2 + (2y)/3 = -1 and x - y /3 = 3`


Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:

If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes `1/2` if we only add 1 to the denominator. What is the fraction?


Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. The bus travels with an average speed of 60 km/hr and the average speed of the aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.


In an envelope there are some 5 rupee notes and some 10 rupee notes. Total amount of these notes together is 350 rupees. Number of 5 rupee notes are less by 10 than twice number of 10 rupee notes. Then find the number of 5 rupee and 10 rupee notes.


Solve the following simultaneous equation.

`2/x + 3/y = 13` ; `5/x - 4/y = -2`


Solve: 99x + 101y = 499, 101x + 99y = 501


The semi perimeter of a rectangular shape garden is 36 m. The length of the garden is 4 m more than its breadth. Find the length and the breadth of the garden


The sum of the digits of a two-digit number is 9. If 27 is added to it, the digits of the number get reversed. The number is ______.


Evaluate: (1004)3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×