Advertisements
Advertisements
प्रश्न
Solve the following pair of linear equation by the elimination method and the substitution method.
3x – 5y – 4 = 0 and 9x = 2y + 7
उत्तर
3x – 5y – 4 = 0 and 9x = 2y + 7
By elimination method
3x – 5y – 4 = 0
3x – 5y = 4 ...(i)
9x = 2y + 7
9x – 2y = 7 ...(ii)
Multiplying equation (i) by 3, we get
9 x – 15 y = 11 ...(iii)
9x – 2y = 7 ...(ii)
Subtracting equation (ii) from equation (iii), we get
-13y = -5
`y = -5/13`
Putting value in equation (i), we get
3x – 5y = 4 ...(i)
`3x - 5(-5/13) = 4`
Multiplying by 13 we get
39x + 25 = 52
39x = 27
x = `27/39`
x = `9/13`
Hence, our answer is `x = 9/13 and y = - 5/13`
By substitution method
3x - 5y- 4 = 0
9x - 2y - 7 = 0
`y = (3x - 4)/5`
Putting `y = (3x - 4)/5-7 = 0`
45x - 6x + 8 - 35 = 0
39x = 27
`x = 27/39`
`x =9/13`
Putting `x = 9/13`
y = `(3xx9/13 - 4)/5`
y = `(27 - 52)/65`
y = `-25 /65`
y = `-5/13`
Hence, `x = 9/13` and `y = -5/13`
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations :
2(ax – by) + (a + 4b) = 0
2(bx + ay) + (b – 4a) = 0
Solve the following pair of linear equation by the elimination method and the substitution method.
`x/2 + (2y)/3 = -1 and x - y /3 = 3`
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.
The sum of a two-digit number and the number formed by reversing the order of digit is 66. If the two digits differ by 2, find the number. How many such numbers are there?
Sanjay gets fixed monthly income. Every year there is a certain increment in his salary. After 4 years, his monthly salary was Rs. 4500 and after 10 years his monthly salary became 5400 rupees, then find his original salary and yearly increment.
The sum of the digits in a two-digits number is 9. The number obtained by interchanging the digits exceeds the original number by 27. Find the two-digit number.
If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.
Solve the following simultaneous equation.
2x + y = -2 ; 3x - y = 7
Solve the following simultaneous equation.
2x - y = 5 ; 3x + 2y = 11
Solve the following simultaneous equation.
x − 2y = −2 ; x + 2y = 10
Solve the following simultaneous equation.
`2/x + 3/y = 13` ; `5/x - 4/y = -2`
By equating coefficients of variables, solve the following equations.
3x - 4y = 7; 5x + 2y = 3
A fraction becomes `1/3` when 2 is subtracted from the numerator and it becomes `1/2` when 1 is subtracted from the denominator. Find the fraction.
The difference between an angle and its complement is 10° find measure of the larger angle.
If 52x + 65y = 183 and 65x + 52y = 168, then find x + y = ?
Complete the following table to draw the graph of 3x − 2y = 18
x | 0 | 4 | 2 | −1 |
y | − 9 | ______ | ______ | ______ |
(x, y) | (0, −9) | (______, _______) | (______, _______) | ______ |
The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.
Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.
∴ The number = 10x + y
∴ The number obtained by interchanging the digits = `square`
∴ The sum of the number and the number obtained by interchanging the digits = 132
∴ 10x + y + 10y + x = `square`
∴ x + y = `square` .....(i)
By second condition,
Digit in the ten’s place = digit in the unit’s place + 2
∴ x – y = 2 ......(ii)
Solving equations (i) and (ii)
∴ x = `square`, y = `square`
Ans: The original number = `square`
Solve: 99x + 101y = 499, 101x + 99y = 501
Evaluate: (1004)3