Advertisements
Advertisements
प्रश्न
Solve the given inequality for real x: 3(2 – x) ≥ 2(1 – x)
उत्तर
3(2 – x) ≥ 2(1 – x)
⇒ 6 – 3x ≥ 2 – 2x
⇒ 6 – 3x + 2x ≥ 2 – 2x + 2x
⇒ 6 – x ≥ 2
⇒ 6 – x – 6 ≥ 2 – 6
⇒ –x ≥ –4
⇒ x ≤ 4
Thus, all real numbers x, which are less than or equal to 4, are the solutions of the given inequality.
Hence, the solution set of the given inequality is (–∞, 4].
APPEARS IN
संबंधित प्रश्न
Solve 24x < 100, when x is a natural number.
Solve 24x < 100, when x is an integer.
Solve 5x – 3 < 7, when x is an integer.
Solve 3x + 8 > 2, when x is an integer.
Solve the given inequality for real x : `x/3 > x/2 + 1`
Solve the given inequality for real x: `(3(x-2))/5 <= (5(2-x))/3`
Solve the given inequality for real x: `1/2 ((3x)/5 + 4) >= 1/3 (x -6)`
Solve the given inequality for real x: 2(2x + 3) – 10 < 6 (x – 2)
Solve the given inequality for real x: `((2x- 1))/3 >= ((3x - 2))/4 - ((2 - x))/5`
Solve the given inequality and show the graph of the solution on number line:
3x – 2 < 2x +1
Solve the given inequality and show the graph of the solution on number line:
3(1 – x) < 2 (x + 4)
To receive Grade ‘A’ in a course, one must obtain an average of 90 marks or more in five examinations (each of 100 marks). If Sunita’s marks in first four examinations are 87, 92, 94 and 95, find minimum marks that Sunita must obtain in fifth examination to get grade ‘A’ in the course.
Find all pairs of consecutive even positive integers, both of which are larger than 5 such that their sum is less than 23.
The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm, find the minimum length of the shortest side.
Solve the inequality.
2 ≤ 3x – 4 ≤ 5
Solve the inequality.
6 ≤ –3(2x – 4) < 12
Solve the inequality.
`-3 <= 4 - (7x)/2 <= 18`
Solve the inequality.
`-12 < 4 - (3x)/(-5) <= 2`
Solve the inequality.
`7 <= (3x + 11)/2 <= 11`
Represent to solution set of each of the following inequations graphically in two dimensional plane:
x + 2y − y ≤ 0
Represent to solution set of each of the following inequations graphically in two dimensional plane:
x + 2 ≥ 0
Represent to solution set of each of the following inequations graphically in two dimensional plane:
5. −3x + 2y ≤ 6
Represent to solution set of each of the following inequations graphically in two dimensional plane:
6. x ≤ 8 − 4y
Represent to solution set of each of the following inequations graphically in two dimensional plane:
y ≥ 2x − 8
Solutions of the inequalities comprising a system in variable x are represented on number lines as given below, then ______.
State whether the following statement is True or False.
If xy > 0, then x > 0, and y < 0
State whether the following statement is True or False.
If |x| < 5, then x ∈ (–5, 5)
State whether the following statement is True or False.
Graph of x > –2 is
Solution of a linear inequality in variable x is represented on number line given below ______.
Solution of a linear inequality in variable x is represented on number line given below ______.
Solution of a linear inequality in variable x is represented on number line given below ______.
Solution of a linear inequality in variable x is represented on number line given below ______.
If |x| ≤ 4, then x ∈ [– 4, 4]