Advertisements
Advertisements
प्रश्न
State whether the following quadratic equation have two distinct real roots. Justify your answer.
(x + 1)(x – 2) + x = 0
उत्तर
The equation (x + 1)(x – 2) + x = 0 has two real and distinct roots.
Simplifying the above equation,
x2 + x – 2x – 2 + x = 0
x2 – 2 = 0
D = b2 – 4ac
= (0)2 – 4(1)(–2)
= 0 + 8 > 0
Hence, the roots are real and distinct.
APPEARS IN
संबंधित प्रश्न
Find the value of p for which the quadratic equation (2p + 1)x2 − (7p + 2)x + (7p − 3) = 0 has equal roots. Also find these roots.
Find the values of k for which the roots are real and equal in each of the following equation:
2kx2 - 40x + 25 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 + 2(k + 3)x + (k + 8) = 0
Find the values of k for which the roots are real and equal in each of the following equation:
k2x2 - 2(2k - 1)x + 4 = 0
If a, b, c are real numbers such that ac ≠ 0, then show that at least one of the equations ax2 + bx + c = 0 and -ax2 + bx + c = 0 has real roots.
If one root of the quadratic equation 2x2 + kx – 6 = 0 is 2, the value of k is:
If (1 – p) is a root of the equation x2 + px + 1 – p = 0, then roots are:
Values of k for which the quadratic equation 2x2 – kx + k = 0 has equal roots is ______.
State whether the following quadratic equation have two distinct real roots. Justify your answer.
`(x - sqrt(2))^2 - 2(x + 1) = 0`
Find whether the following equation have real roots. If real roots exist, find them.
`1/(2x - 3) + 1/(x - 5) = 1, x ≠ 3/2, 5`