Advertisements
Advertisements
प्रश्न
State which of the following statement are true and which are false. Justify your answer.
37 ∉ {x | x has exactly two positive factors}
पर्याय
False
True
उत्तर
This statement is False.
Explanation:
Since, 37 has exactly two positive factors, 1 and 37, 37 belongs to the set.
APPEARS IN
संबंधित प्रश्न
Identify whether the following is set or not? Justify your answer.
A team of eleven best-cricket batsmen of the world.
Write the following set in the set-builder form:
{5, 25, 125, 625}
Write the following set in the set-builder form:
{2, 4, 6, …}
List all the elements of the following set:
A = {x : x is an odd natural number}
Which of the following collection are sets? Justify your answer:
The collection of prime integers.
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
12 ...... A
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
−2 ...... A
Describe the following sets in Roster form:
{x : x is a prime number which is a divisor of 60}
Describe the following set in Roster form:
The set of all letters in the word 'Trigonometry'
List all the elements of the following set:
\[C = \left\{ x: x \text{ is an integer }, - \frac{1}{2} < x < \frac{9}{2} \right\}\]
List all the elements of the following set:
D = {x : x is a vowel in the word "EQUATION"}
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a \right\} \subset \left\{ \left\{ a \right\}, b \right\}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a, b \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\left\{ a, b, c \right\} \subset A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ 1, 2, 3 \right\} \subset A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ \left\{ 4, 5 \right\} \right\} \subset A\]
Let \[A = \left\{ \phi, \left\{ \phi \right\}, 1, \left\{ 1, \phi \right\}, 2 \right\}\]Which of the following are true? \[\left\{ \left\{ 2 \right\}, \left\{ 1 \right\} \right\} \not\subset A\]
Write down all possible subsets of each of the following set:
{a}
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} and B = {2, 3, 5, 7}. Verify that \[\left( A \cap B \right)' = A' \cup B'\]
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
8 ____ A
There are 260 persons with skin disorders. If 150 had been exposed to the chemical A, 74 to the chemical B, and 36 to both chemicals A and B, find the number of persons exposed to Chemical A or Chemical B
Answer the following:
In a survey of 425 students in a school, it was found that 115 drink apple juice, 160 drink orange juice, and 80 drink both apple as well as orange juice. How many drinks neither apple juice nor orange juice?
Write the following sets in the roaster from:
C = {x | x is a positive factor of a prime number p}
Write the following sets in the roaster form:
F = {x | x4 – 5x2 + 6 = 0, x ∈ R}
If Y = {x | x is a positive factor of the number 2p – 1 (2p – 1), where 2p – 1 is a prime number}.Write Y in the roaster form.
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics and Science but not in English
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study at least one of the three languages
In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. Then the number of persons who read neither is ______.
A survey shows that 63% of the people watch a News Channel whereas 76% watch another channel. If x% of the people watch both channel, then ______.