Advertisements
Advertisements
प्रश्न
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a \right\} \subset \left\{ \left\{ a \right\}, b \right\}\]
उत्तर
The correct forms of each of the incorrect statements are:
\[{\left\{ a \right\}} \subset \left\{ \left\{ a \right\}, b \right\}\]
APPEARS IN
संबंधित प्रश्न
Identify whether the following is set or not? Justify your answer.
A team of eleven best-cricket batsmen of the world.
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
5 _____ A
Write the following set in roster form:
F = The set of all letters in the word BETTER
List all the elements of the following set:
C = {x : x is an integer, x2 ≤ 4}
Which of the following collection are sets? Justify your answer:
A collection of novels written by Munshi Prem Chand.
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
9 ...... A
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
0 ...... A
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
−2 ...... A
Describe the following sets in Roster form:
{x ∈ N : x = 2n, n ∈ N};
Describe the following sets in Roster form:
{x : x is a prime number which is a divisor of 60}
Describe the following sets in Roster form:
The set of all letters in the word 'Better'.
List all the elements of the following sets:
\[A = \left\{ x: x^2 \leq 10, x \in Z \right\}\]
Which of the following statements are correct?
Write a correct form of each of the incorrect statement.
\[a \in {\left\{ a \right\}, b}\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\left\{ c, d \right\} \in A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ 1, 2, 3 \right\} \subset A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ 6, 7, 8 \right\} \in A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ \left\{ 4, 5 \right\} \right\} \subset A\]
Write down all possible subsets of each of the following set:
{a}
If A is any set, prove that: \[A \subseteq \phi \Leftrightarrow A = \phi .\]
Prove that:
\[A \subseteq B, B \subseteq C \text{ and } C \subseteq A \Rightarrow A = C .\]
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} and B = {2, 3, 5, 7}. Verify that \[\left( A \cap B \right)' = A' \cup B'\]
Describe the following set in Set-Builder form
`{1/2, 2/5, 3/10, 4/17, 5/26, 6/37, 7/50}`
Write the following interval in Set-Builder form
(2, 5]
Write the following interval in Set-Builder form
[– 3, 4)
Answer the following:
Write down the following set in set-builder form
{a, e, i, o, u)
Answer the following:
Write down the following set in set-builder form
{Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}
State which of the following statement are true and which are false. Justify your answer.
7,747 ∈ {t | t is a multiple of 37}
Write the following sets in the roaster from:
A = {x : x ∈ R, 2x + 11 = 15}
Write the following sets in the roaster form:
E = `{w | (w - 2)/(w + 3) = 3, w ∈ R}`
If Y = {x | x is a positive factor of the number 2p – 1 (2p – 1), where 2p – 1 is a prime number}.Write Y in the roaster form.
128 ∈ {y | the sum of all the positive factors of y is 2y}
State which of the following statement is true and which is false. Justify your answer.
3 ∉ {x | x4 – 5x3 + 2x2 – 112x + 6 = 0}
State which of the following statements is true and which is false. Justify your answer.
496 ∉ {y | the sum of all the positive factors of y is 2y}.
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics and Science but not in English
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study English and Sanskrit but not French
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study at least one of the three languages
Let S = set of points inside the square, T = the set of points inside the triangle and C = the set of points inside the circle. If the triangle and circle intersect each other and are contained in a square. Then ______.
In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. Then the number of persons who read neither is ______.