Advertisements
Advertisements
प्रश्न
List all the elements of the following set:
C = {x : x is an integer, x2 ≤ 4}
उत्तर
C = {x : x is an integer, x2 ≤ 4}
It can be seen that,
(–1)2 = 1 ≤ 4; (–2)2 = 4 ≤ 4; (–3)2 = 9 > 4
02 = 0 ≤ 4
12 = 1 ≤ 4
22 = 4 ≤ 4
32 = 9 > 4
∴ C = {–2, –1, 0, 1, 2}
APPEARS IN
संबंधित प्रश्न
Identify whether the following is set or not? Justify your answer.
The collection of all months of a year beginning with the letter J.
Identify whether the following is set or not? Justify your answer.
A team of eleven best-cricket batsmen of the world.
Identify whether the following is set or not? Justify your answer.
The collection of all natural numbers less than 100.
Write the following set in the set-builder form:
{5, 25, 125, 625}
Write the following set in the set-builder form:
{2, 4, 6, …}
Write the following set in the set-builder form:
{1, 4, 9, ....., 100}
List all the elements of the following set:
A = {x : x is an odd natural number}
Which of the following collection are sets? Justify your answer:
The collection of prime integers.
Describe the following sets in Roster form:
{x ∈ N : x = 2n, n ∈ N};
Describe the following sets in set-builder form:
B={1,1/2 ,1/3, 1/4,1/5,...........};
Describe the following sets in set-builder form:
{2, 4, 6, 8 .....}
Describe the following sets in set-builder form:
{5, 25, 125 625}
List all the elements of the following set:
F = {x : x is a letter of the word "MISSISSIPPI"}
Which of the following statements are correct?
Write a correct form of each of the incorrect statement.
\[a \in {\left\{ a \right\}, b}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a \right\} \subset \left\{ \left\{ a \right\}, b \right\}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ b, c \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a, b \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\left\{ \left\{ c, d \right\} \right\} \subset A\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[a \in A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[1 \in A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\phi \in A\]
Write down all possible proper subsets each of the following set:
{1, 2},
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} and B = {2, 3, 5, 7}. Verify that \[\left( A \cap B \right)' = A' \cup B'\]
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
2 _____ A
Describe the following set in Roster form
B = `{x//x "is an integer", -3/2 < x < 9/2}`
Describe the following set in Set-Builder form
{0, ±1, ±2, ±3}
If A = {x/6x2 + x – 15 = 0}, B = {x/2x2 – 5x – 3 = 0}, C = {x/2x2 – x – 3 = 0} then find (A ∪ B ∪ C).
Write the following interval in Set-Builder form
`(-∞, 5]`
Write the following sets in the roaster form.
C = {x : x2 + 7x – 8 = 0, x ∈ R}
Given that E = {2, 4, 6, 8, 10}. If n represents any member of E, then, write the following sets containing all numbers represented by n2
Let X = {1, 2, 3, 4, 5, 6}. If n represent any member of X, express the following as sets:
n + 5 = 8
Write the following sets in the roaster from:
C = {x | x is a positive factor of a prime number p}
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in English and Mathematics but not in Science.
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study Sanskrit only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study none of the three languages
If sets A and B are defined as A = `{(x, y) | y = 1/x, 0 ≠ x ∈ "R"}` B = {(x, y) | y = – x, x ∈ R}, then ______.
Let S = {x | x is a positive multiple of 3 less than 100}
P = {x | x is a prime number less than 20}. Then n(S) + n(P) is ______.
State True or False for the following statement.
Given A = {0, 1, 2}, B = {x ∈ R | 0 ≤ x ≤ 2}. Then A = B.