Advertisements
Advertisements
प्रश्न
Let S = {x | x is a positive multiple of 3 less than 100}
P = {x | x is a prime number less than 20}. Then n(S) + n(P) is ______.
पर्याय
34
41
33
30
उत्तर
Let S = {x | x is a positive multiple of 3 less than 100}
P = {x | x is a prime number less than 20}. Then n(S) + n(P) is 41.
Explanation:
Given that, S = {x|x is a positive multiple of 3 < 100}
∴ S = {3, 6, 9, 12, 15, 18, ..., 99}
⇒ n(S) = 33
T = {x|x is a prime number < 20}
∴ T = {2, 3, 5, 7, 11, 13, 17, 19}
⇒ n(T) = 8
So, n(S) + n(T)
= 33 + 8
= 41
APPEARS IN
संबंधित प्रश्न
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
5 _____ A
Write the following set in roster form:
A = {x : x is an integer and –3 ≤ x < 7}
Write the following set in roster form:
B = {x : x is a natural number less than 6}
List all the elements of the following set:
E = {x : x is a month of a year not having 31 days}
Describe the following sets in Roster form:
{x ∈ N : x = 2n, n ∈ N};
Which of the following statement are correct?
Write a correct form of each of the incorrect statements.
\[a \subset \left\{ a, b, c \right\}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a, b \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a, b \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\phi \subset \left\{ a, b, c \right\}\]
Let A = {a, b, {c, d}, e}. Which of the following statements are false and why?
\[\left\{ a, b, e \right\} \in A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\phi \in A\]
Write down all possible proper subsets each of the following set:
{1, 2, 3}
What is the total number of proper subsets of a set consisting of n elements?
If A is any set, prove that: \[A \subseteq \phi \Leftrightarrow A = \phi .\]
There are 260 persons with skin disorders. If 150 had been exposed to chemical A, 74 to chemical B, and 36 to both chemicals A and B, find the number of persons exposed to Chemical B but not Chemical A
Write the following interval in Set-Builder form:
[6, 12]
Answer the following:
Write down the following set in set-builder form
{10, 20, 30, 40, 50}
Write the following sets in the roaster from:
C = {x | x is a positive factor of a prime number p}
Write the following sets in the roaster form:
D = {t | t3 = t, t ∈ R}
If Y = {x | x is a positive factor of the number 2p – 1 (2p – 1), where 2p – 1 is a prime number}.Write Y in the roaster form.
128 ∈ {y | the sum of all the positive factors of y is 2y}
State which of the following statements is true and which is false. Justify your answer.
496 ∉ {y | the sum of all the positive factors of y is 2y}.
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics and Science but not in English
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in more than one subject only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study English only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study French and Sanskrit but not English
A survey shows that 63% of the people watch a News Channel whereas 76% watch another channel. If x% of the people watch both channel, then ______.
If sets A and B are defined as A = `{(x, y) | y = 1/x, 0 ≠ x ∈ "R"}` B = {(x, y) | y = – x, x ∈ R}, then ______.