Advertisements
Advertisements
प्रश्न
Write the following set in roster form:
A = {x : x is an integer and –3 ≤ x < 7}
उत्तर
A = {x : x is an integer and –3 ≤ x < 7}
The elements of this set are –2, –1, 0, 1, 2, 3, 4, 5, and 6 only.
Therefore, the given set can be written in roster form as A = {–2, –1, 0, 1, 2, 3, 4, 5, 6}.
APPEARS IN
संबंधित प्रश्न
Identify whether the following is set or not? Justify your answer.
The collection of all boys in your class.
Write the following set in roster form:
B = {x : x is a natural number less than 6}
Write the following set in the set-builder form:
{5, 25, 125, 625}
Write the following set in the set-builder form:
{2, 4, 6, …}
Which of the following collection are sets? Justify your answer:
The collection of all girls in your class.
Which of the following collection are sets? Justify your answer:
The collection of difficult topics in mathematics.
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
0 ...... A
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
−2 ...... A
Describe the following sets in Roster form:
{x ∈ N : x is a prime number, 10 < x < 20};
Describe the following sets in Roster form:
{x ∈ N : x = 2n, n ∈ N};
Describe the following sets in Roster form:
{x ∈ R : x > x}.
Describe the following set in Roster form:
The set of all letters in the word 'Trigonometry'
Describe the following sets in Roster form:
The set of all letters in the word 'Better'.
Match each of the sets on the left in the roster form with the same set on the right described in the set-builder form:
(i) | {A, P, L, E} | (i) | x : x + 5 = 5, x ∈ Z |
(ii) | {5, −5} | (ii) | {x : x is a prime natural number and a divisor of 10} |
(iii) | {0} | (iii) | {x : x is a letter of the word "RAJASTHAN"} |
(iv) | {1, 2, 5, 10,} | (iv) | {x: x is a natural number and divisor of 10} |
(v) | {A, H, J, R, S, T, N} | (v) | x : x2 − 25 = 0 |
(vi) | {2, 5} | (vi) | {x : x is a letter of the word "APPLE"} |
Which of the following statements are correct?
Write a correct form of each of the incorrect statement.
\[a \in {\left\{ a \right\}, b}\]
Let A = {a, b, {c, d}, e}. Which of the following statements are false and why?
\[\left\{ a, b, e \right\} \in A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ 1, 2, 3 \right\} \subset A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ 6, 7, 8 \right\} \in A\]
Let \[A = \left\{ \phi, \left\{ \phi \right\}, 1, \left\{ 1, \phi \right\}, 2 \right\}\]Which of the following are true? \[\left\{ 1 \right\} \in A\]
What is the total number of proper subsets of a set consisting of n elements?
If A is any set, prove that: \[A \subseteq \phi \Leftrightarrow A = \phi .\]
Describe the following set in Set-Builder form
`{1/2, 2/5, 3/10, 4/17, 5/26, 6/37, 7/50}`
In a class of 200 students who appeared in certain examinations, 35 students failed in CET, 40 in NEET and 40 in JEE, 20 failed in CET and NEET, 17 in NEET and JEE, 15 in CET and JEE, and 5 failed in all three examinations. Find how many students, failed in NEET or JEE entrance
From amongst 2000 literate individuals of a town, 70% read Marathi newspapers, 50% read English newspapers and 32.5% read both Marathi and English newspapers. Find the number of individuals who read at least one of the newspapers
A college awarded 38 medals in volleyball, 15 in football, and 20 in basketball. The medals awarded to a total of 58 players and only 3 players got medals in all three sports. How many received medals in exactly two of the three sports?
Answer the following:
Write down the following set in set-builder form
{a, e, i, o, u)
Answer the following:
In a school there are 20 teachers who teach Mathematics or Physics. Of these, 12 teach Mathematics and 4 teach both Physics and Mathematics. How many teachers teach Physics?
Let X = {1, 2, 3, 4, 5, 6}. If n represent any member of X, express the following as sets:
n is greater than 4
Write the following sets in the roaster form:
D = {t | t3 = t, t ∈ R}
If Y = {x | x is a positive factor of the number 2p – 1 (2p – 1), where 2p – 1 is a prime number}.Write Y in the roaster form.
128 ∈ {y | the sum of all the positive factors of y is 2y}
State which of the following statements is true and which is false. Justify your answer.
496 ∉ {y | the sum of all the positive factors of y is 2y}.
Determine whether the following statement is true or false. Justify your answer.
For all sets A, B, and C, A – (B – C) = (A – B) – C
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study French only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study Sanskrit only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study French and English but not Sanskrit
Let R be set of points inside a rectangle of sides a and b (a, b > 1) with two sides along the positive direction of x-axis and y-axis. Then ______.
If A and B are any two sets, then A – B is equal to ______.