Advertisements
Advertisements
प्रश्न
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
10 _____ A
पर्याय
∈
∉
उत्तर
10 ∉ A
10 is not the element of A.
APPEARS IN
संबंधित प्रश्न
Identify whether the following is set or not? Justify your answer.
The collection of all boys in your class.
Write the following set in roster form:
E = The set of all letters in the word TRIGONOMETRY
Write the following set in roster form:
F = The set of all letters in the word BETTER
Which of the following collection are sets? Justify your answer:
The collection of difficult topics in mathematics.
Describe the following sets in Roster form:
{x ∈ N : x = 2n, n ∈ N};
Describe the following sets in Roster form:
{x : x is a prime number which is a divisor of 60}
Describe the following set in Roster form:
The set of all letters in the word 'Trigonometry'
Describe the following sets in set-builder form:
C = {0, 3, 6, 9, 12, ...}
List all the elements of the following set:
D = {x : x is a vowel in the word "EQUATION"}
List all the elements of the following set:
F = {x : x is a letter of the word "MISSISSIPPI"}
Which of the following statements are correct?
Write a correct form of each of the incorrect statement.
\[a \in {\left\{ a \right\}, b}\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\left\{ c, d \right\} \in A\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[a \in A\]
Let A = {a, b, {c, d}, e}. Which of the following statements are false and why?
\[\left\{ a, b, e \right\} \in A\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\left\{ a, b, c \right\} \subset A\]
Let \[A = \left\{ \phi, \left\{ \phi \right\}, 1, \left\{ 1, \phi \right\}, 2 \right\}\] Which of the following are true? \[2 \subset A\]
Let \[A = \left\{ \phi, \left\{ \phi \right\}, 1, \left\{ 1, \phi \right\}, 2 \right\}\]Which of the following are true? \[\left\{ \left\{ 2 \right\}, \left\{ 1 \right\} \right\} \not\subset A\]
Let \[\left\{ \left\{ 2 \right\}, \left\{ 1 \right\} \right\} \not\subset A\] Which of the following are true? \[\left\{ \left\{ 2 \right\}, \left\{ 1 \right\} \right\} \not\subset A\]
Prove that:
\[A \subseteq B, B \subseteq C \text{ and } C \subseteq A \Rightarrow A = C .\]
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 3, 4}, = {2, 4, 6, 8} and C = {3, 4, 5, 6}.
Find \[\left( A \cap C \right)'\]
Describe the following set in Roster form
A = {x/x is a letter of the word 'MOVEMENT'}
Describe the following set in Roster form
C = {x/x = 2n + 1, n ∈ N}
Describe the following set in Set-Builder form
{0}
Describe the following set in Set-Builder form
{0, ±1, ±2, ±3}
Describe the following set in Set-Builder form
`{1/2, 2/5, 3/10, 4/17, 5/26, 6/37, 7/50}`
There are 260 persons with skin disorders. If 150 had been exposed to chemical A, 74 to chemical B, and 36 to both chemicals A and B, find the number of persons exposed to Chemical A but not Chemical B
Write the following interval in Set-Builder form
`(-∞, 5]`
Answer the following:
Write down the following set in set-builder form
{Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}
Answer the following:
In a survey of 425 students in a school, it was found that 115 drink apple juice, 160 drink orange juice, and 80 drink both apple as well as orange juice. How many drinks neither apple juice nor orange juice?
State which of the following statement are true and which are false. Justify your answer.
7,747 ∈ {t | t is a multiple of 37}
Given that E = {2, 4, 6, 8, 10}. If n represents any member of E, then, write the following sets containing all numbers represented by n2
Write the following sets in the roaster from:
B = {x | x2 = x, x ∈ R}
128 ∈ {y | the sum of all the positive factors of y is 2y}
Determine whether the following statement is true or false. Justify your answer.
For all sets A, B, and C, A – (B – C) = (A – B) – C
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in English and Mathematics but not in Science.
In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Find the number of students who play neither?
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study Sanskrit only
In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Then, the number of students who play neither is ______.
If A and B are any two sets, then A – B is equal to ______.