Advertisements
Advertisements
प्रश्न
Subtract:
2x3 − 4x2 + 3x + 5 from 4x3 + x2 + x + 6
उत्तर
\[ \left( 4 x^3 + x^2 + x + 6 \right) - \left( 2 x^3 - 4 x^2 + 3x + 5 \right)\]
\[ = 4 x^3 + x^2 + x + 6 - 2 x^3 + 4 x^2 - 3x - 5\]
\[ = 4 x^3 - 2 x^3 + x^2 + 4 x^2 + x - 3x + 6 - 5 \text { (Collecting like terms })\]
\[ = 2 x^3 + 5 x^2 - 2x + 1 (\text { Combining like terms })\]
APPEARS IN
संबंधित प्रश्न
Simplify combining like terms: 21b − 32 + 7b − 20b
Add: 3p2q2 - 4pq + 5, - 10p2q2, 15 + 9pq + 7p2q2
Subtract: a (b - 5) from b (5 - a)
Add the following algebraic expression:
\[\frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x, - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy\]
Add: 2a + b + 3c and `"a" + 1/3"b" + 2/5"c"`
Add:
xy2z2 + 3x2y2z – 4x2yz2, – 9x2y2z + 3xy2z2 + x2yz2
Add:
5x2 – 3xy + 4y2 – 9, 7y2 + 5xy – 2x2 + 13
Multiply the following:
(ab + c), (ab + c)
The expression 13 + 90 is a ______.
Each symbol given below represents an algebraic expression:
= 2x2 + 3y,
= 5x2 + 3x,
= 8y2 – 3x2 + 2x + 3y
The symbols are then represented in the expression:
Find the expression which is represented by the above symbols.