Advertisements
Advertisements
प्रश्न
The base of a parallelogram is (2x + 3 units) and the corresponding height is (2x – 3 units). Find the area of the parallelogram in terms of x. What will be the area of parallelogram of x = 30 units?
उत्तर
We have, the base and the corresponding height of a parallelogram are (2x + 3) units and (2x – 3) units, respectively.
∵ Area of a parallelogram = Base × Height
= (2x + 3) × (2x – 3)
= (2x)2 – (3)2 ...[∵ (a + b)(a – b) = a2 – b2]
= (4x2 – 9) sq.units
Now, If x = 30.
Then, the area of the parallelogram = 4 × (30)2 – 9
= 3600 – 9
= 3591 sq.units
APPEARS IN
संबंधित प्रश्न
Expand 4p2 – 25q2
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
z2 – 16
Using suitable identities, evaluate the following.
(35.4)2 – (14.6)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
4x2 – 49y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
p5 – 16p
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 625y4
Factorise the expression and divide them as directed:
(x2 – 22x + 117) ÷ (x – 13)
Verify the following:
(m + n)(m2 – mn + n2) = m3 + n3
Verify the following:
(a2 – b2)(a2 + b2) + (b2 – c2)(b2 + c2) + (c2 – a2) + (c2 + a2) = 0
The product of two expressions is x5 + x3 + x. If one of them is x2 + x + 1, find the other.