Advertisements
Advertisements
Question
The base of a parallelogram is (2x + 3 units) and the corresponding height is (2x – 3 units). Find the area of the parallelogram in terms of x. What will be the area of parallelogram of x = 30 units?
Solution
We have, the base and the corresponding height of a parallelogram are (2x + 3) units and (2x – 3) units, respectively.
∵ Area of a parallelogram = Base × Height
= (2x + 3) × (2x – 3)
= (2x)2 – (3)2 ...[∵ (a + b)(a – b) = a2 – b2]
= (4x2 – 9) sq.units
Now, If x = 30.
Then, the area of the parallelogram = 4 × (30)2 – 9
= 3600 – 9
= 3591 sq.units
APPEARS IN
RELATED QUESTIONS
Choose the right answers from the option:
The difference of the squares, (612 – 512 ) is equal to ______.
Factorise the following expressions
m2 + m – 72
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(p + 2)(p – 2)
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
z2 – 16
Using suitable identities, evaluate the following.
9.8 × 10.2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x2 – 9
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(2p^2)/25 - 32q^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
y4 – 81
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 625y4
Find the value of a, if pq2a = (4pq + 3q)2 – (4pq – 3q)2