Advertisements
Advertisements
प्रश्न
The birth weight of babies is Normally distributed with mean 3,500g and standard deviation 500g. What is the probability that a baby is born that weighs less than 3,100g?
उत्तर
Let x be a normally distributed variable with mean 3,500g and standard deviation 500g
Here µ = 3500 and σ = 500
The standard normal variate z = x
P(weight less than variate 3100g) = P(X < 3100)
When x = 3100
z = `(3100 - 3500)/500`
= `(-400)/500`
= `(-4)/5`
z = – 0.8
∴ P(Z < 3100) = P(Z < -0.8)
= P(`-oo` < z < 0) – P(– 0.8 < z < 0)
= 0.5 – P(0 < z < 0.8)
= 0.5 – 0.2881
= 0.2119
APPEARS IN
संबंधित प्रश्न
An experiment succeeds twice as often as it fails, what is the probability that in next five trials there will be three successes
A car hiring firm has two cars. The demand for cars on each day is distributed as a Poison variate, with mean 1.5. Calculate the proportion of days on which neither car is used
The distribution of the number of road accidents per day in a city is poisson with mean 4. Find the number of days out of 100 days when there will be at most 3 accidents
Choose the correct alternative:
If P(Z > z) = 0.5832 what is the value of z (z has a standard normal distribution)?
A manufacturer of metal pistons finds that on the average, 12% of his pistons are rejected because they are either oversize or undersize. What is the probability that a batch of 10 pistons will contain no more than 2 rejects?
A manufacturer of metal pistons finds that on the average, 12% of his pistons are rejected because they are either oversize or undersize. What is the probability that a batch of 10 pistons will contain at least 2 rejects?
Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100. Raghul wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test. Raghul takes the test and scores 585. Will he be admitted to this university?
The annual salaries of employees in a large company are approximately normally distributed with a mean of $50,000 and a standard deviation of $20,000. What percent of people earn less than $40,000?
X is a normally distributed variable with mean µ = 30 and standard deviation σ = 4. Find P(X < 40)
X is a normally distributed variable with mean µ = 30 and standard deviation σ = 4. Find P(X > 21)