Advertisements
Advertisements
प्रश्न
Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100. Raghul wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test. Raghul takes the test and scores 585. Will he be admitted to this university?
उत्तर
Let x denotes the scores of a national test mean
µ = 500 and standard deviation σ = 100
Standard normal variate z = `(x - mu)/sigma = (x - 5000)/100`
When x = 585
z = `(585 - 500)/100 = 85/100` = 0.85
P(X ≤ 585) = P(Z ≤ 0.85)
P(Z ≤ 0.85) = P(`-oo` < z < 0) + P(0 < z < 0.85)
= 0.5 + 0.3023
= 0.8023
For n = 100
P(Z ≤ 0.85) = 100 × 0.8023
= 80.23
∴ Raehul scores 80.23%
We can determine the scores of 70% of the students as follows:
From the table for the area 0.35
We get z1 = – 1.4(as z1 lies to left of z = 0)
Similarly z2 = 1.4
Now z1 = `(x_1 - 500)/100`
⇒ – 1.4 = `(x_1 - 500)/100`
– 1.4 × 100 = x1 – 500
⇒ x1 500 – 140
x1 = 360
Again z2 = `(x_2 - 500)/100`
⇒ – 1.4 = `(x_1 - 500)/100`
1.4 × 100 = x2 – 500
⇒ x2 = 140 + 500
= x2 = 640
Hence 70% of students score between 360 and 640
But Raghul scored 585. His score is not better than the score of 70% of the students.
∴ He will not be admitted to the university.
APPEARS IN
संबंधित प्रश्न
Write down the condition for which the binomial distribution can be used.
Forty percent of business travellers carry a laptop. In a sample of 15 business travelers, what is the probability that atleast three of the travelers have a laptop?
Write the conditions for which the poisson distribution is a limiting case of binomial distribution
The average number of phone calls per minute into the switchboard of a company between 10.00 am and 2.30 pm is 2.5. Find the probability that during one particular minute there will be no phone at all
The average number of phone calls per minute into the switchboard of a company between 10.00 am and 2.30 pm is 2.5. Find the probability that during one particular minute there will be exactly 3 calls
Choose the correct alternative:
If X ~ N(µ, σ2), the maximum probability at the point of inflexion of normal distribution
Choose the correct alternative:
Forty percent of the passengers who fly on a certain route do not check in any luggage. The planes on this route seat 15 passengers. For a full flight, what is the mean of the number of passengers who do not check in any luggage?
Choose the correct alternative:
The starting annual salaries of newly qualified chartered accountants (CA’s) in South Africa follow a normal distribution with a mean of ₹ 180,000 and a standard deviation of ₹ 10,000. What is the probability that a randomly selected newly qualified CA will earn between ₹ 165,000 and ₹ 175,000?
Choose the correct alternative:
Cape town is estimated to have 21% of homes whose owners subscribe to the satellite service, DSTV. If a random sample of your home is taken, what is the probability that all four homes subscribe to DSTV?
Choose the correct alternative:
In a binomial distribution, the probability of success is twice as that of failure. Then out of 4 trials, the probability of no success is