Advertisements
Advertisements
प्रश्न
The blood groups of 30 students of class IX are recorded as follows:
A | B | O | O | AB | O | A | O | B | A | O | B | A | O | O |
A | AB | O | A | A | O | O | AB | B | A | O | B | A | B | O |
(i) A
(ii) B
(iii) AB
(iv) O
उत्तर
The total number of trials is 30.
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
P (A)=`m/n`
(i) Let A1 be the event that the blood group of a chosen student is A.
The number of times A1 happens is 9.
Therefore, we have
`P (A_1) = 9/30`
=0.3
(iii) Let A2 be the event that the blood group of a chosen student is B.
The number of times A2 happens is 6.
Therefore, we have
`P (A-2) = 6/30`
=0.2
(iii) Let A3 be the event that the blood group of a chosen student is AB.
The number of times A3 happens is 3.
Therefore, we have
`P (A_3) = 3/30`
=0.1
(iv) Let A4 be the event that the blood group of a chosen student is O.
The number of times A4 happens is 12.
Therefore, we have
`P (A_4) = 12/30`
=0.4
APPEARS IN
संबंधित प्रश्न
1500 families with 2 children were selected randomly, and the following data were recorded:-
Number of girls in a family | 2 | 1 | 0 |
Number of families | 475 | 814 | 211 |
Compute the probability of a family, chosen at random, having
(i) 2 girls (ii) 1 girl (iii) No girl
Also check whether the sum of these probabilities is 1.
A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: 0 − 20, 20 − 30… 60 − 70, 70 − 100. Then she formed the following table:-
Marks | Number of students |
0 - 20 | 7 |
20 - 30 | 10 |
30 - 40 | 10 |
40 - 50 | 20 |
50 - 60 | 20 |
60 - 70 | 15 |
70 - above | 8 |
Total 90 |
(i) Find the probability that a student obtained less than 20 % in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.
The following table gives the life time of 400 neon lamps:
Life time (in hours) |
300-400 | 400-500 | 500-600 | 600-700 | 700-800 | 800-900 | 900-1000 |
Number of lamps: | 14 | 56 | 60 | 86 | 74 | 62 | 48 |
A bulb is selected of random, Find the probability that the the life time of the selected bulb is:
(i) less than 400
(ii) between 300 to 800 hours
(iii) at least 700 hours.
Define an event.
A die is thrown 100 times. If the probability of getting an even number is `2/5` . How many times an odd number is obtained?
Which of the following cannot be the probability of an event?
Two coins are tossed simultaneously. The probability of getting atmost one head is
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has
- no defective bulb?
- defective bulbs from 2 to 6?
- defective bulbs less than 4?
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has defective bulbs less than 4?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have not more than 5 defective parts