Advertisements
Advertisements
प्रश्न
The composition of functions is associative.
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
fo(goh)(x) = (fog)oh
This can be verified by considering particular f(x), g(x) and h(x)
APPEARS IN
संबंधित प्रश्न
If the function f : R → R be defined by f(x) = 2x − 3 and g : R → R by g(x) = x3 + 5, then find the value of (fog)−1 (x).
Let f : W → W be defined as
`f(n)={(n-1, " if n is odd"),(n+1, "if n is even") :}`
Show that f is invertible a nd find the inverse of f. Here, W is the set of all whole
numbers.
Let f, g and h be functions from R to R. Show that
`(f + g)oh = foh + goh`
`(f.g)oh = (foh).(goh)`
Find gof and fog, if f(x) = |x| and g(x) = |5x - 2|
Find gof and fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`
State with reason whether following functions have inverse g: {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}
Consider f: R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.
Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`
Let f: X → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = IY(y) = fog2(y). Use one-one ness of f).
Consider f: {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.
Let f: X → Y be an invertible function. Show that the inverse of f−1 is f, i.e., (f−1)−1 = f.
Let `f:R - {-4/3} -> R` be a function defined as `f(x) = (4x)/(3x + 4)`. The inverse of f is map g Range `f -> R -{- 4/3}`
(A) `g(y) = (3y)/(3-4y)`
(B) `g(y) = (4y)/(4 - 3y)`
(C) `g(y) = (4y)/(3 - 4y)`
(D) `g(y) = (3y)/(4 - 3y)`
Let f : W → W be defined as f(x) = x − 1 if x is odd and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.
If f : R → R, f(x) = x3 and g: R → R , g(x) = 2x2 + 1, and R is the set of real numbers, then find fog(x) and gof (x)
Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is ______.
Let f: A → B and g: B → C be the bijective functions. Then (g o f)–1 is ______.
Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.
Let f = {(1, 2), (3, 5), (4, 1) and g = {(2, 3), (5, 1), (1, 3)}. Then g o f = ______ and f o g = ______.
Let f: R → R be the function defined by f(x) = sin (3x+2) ∀ x ∈ R. Then f is invertible.
If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.
If f : R → R, g : R → R and h : R → R are such that f(x) = x2, g(x) = tan x and h(x) = log x, then the value of (go(foh)) (x), if x = 1 will be ____________.
If f : R → R defind by f(x) = `(2"x" - 7)/4` is an invertible function, then find f-1.
The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-
If f: N → Y be a function defined as f(x) = 4x + 3, Where Y = {y ∈ N: y = 4x+ 3 for some x ∈ N} then function is
Let `f : R {(-1)/3} → R - {0}` be defined as `f(x) = 5/(3x + 1)` is invertible. Find f–1(x).