Advertisements
Advertisements
प्रश्न
State with reason whether following functions have inverse g: {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}
उत्तर
g: {5, 6, 7, 8} → {1, 2, 3, 4} defined as:
g = {(5, 4), (6, 3), (7, 4), (8, 2)}
From the given definition of g, it is seen that g is a many one function as: g(5) = g(7) = 4.
∴g is not one-one,
Hence, function g does not have an inverse.
APPEARS IN
संबंधित प्रश्न
Let f : W → W be defined as
`f(n)={(n-1, " if n is odd"),(n+1, "if n is even") :}`
Show that f is invertible a nd find the inverse of f. Here, W is the set of all whole
numbers.
Let f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.
Let f, g and h be functions from R to R. Show that
`(f + g)oh = foh + goh`
`(f.g)oh = (foh).(goh)`
Find gof and fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`
if f(x) = `(4x + 3)/(6x - 4), x ≠ 2/3` show that fof(x) = x, for all x ≠ 2/3 . What is the inverse of f?
State with reason whether following functions have inverse h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Consider f: R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.
Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`
Let f: X → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = IY(y) = fog2(y). Use one-one ness of f).
Consider f: {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.
Let f: X → Y be an invertible function. Show that the inverse of f−1 is f, i.e., (f−1)−1 = f.
Let `f:R - {-4/3} -> R` be a function defined as `f(x) = (4x)/(3x + 4)`. The inverse of f is map g Range `f -> R -{- 4/3}`
(A) `g(y) = (3y)/(3-4y)`
(B) `g(y) = (4y)/(4 - 3y)`
(C) `g(y) = (4y)/(3 - 4y)`
(D) `g(y) = (3y)/(4 - 3y)`
Let f: W → W be defined as f(n) = n − 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
Consider f: `R_+ -> [-5, oo]` given by `f(x) = 9x^2 + 6x - 5`. Show that f is invertible with `f^(-1) (y) ((sqrt(y + 6)-1)/3)`
Hence Find
1) `f^(-1)(10)`
2) y if `f^(-1) (y) = 4/3`
where R+ is the set of all non-negative real numbers.
Let f : W → W be defined as f(x) = x − 1 if x is odd and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.
If f : R → R, f(x) = x3 and g: R → R , g(x) = 2x2 + 1, and R is the set of real numbers, then find fog(x) and gof (x)
Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is ______.
Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",", "if" x "is rational"),(1 - x",", "if" x "is irrational"):}`. Then (f o f) x is ______.
Let f: R → R be the function defined by f(x) = sin (3x+2) ∀ x ∈ R. Then f is invertible.
The composition of functions is commutative.
The composition of functions is associative.
Every function is invertible.
If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.
Let f : N → R : f(x) = `((2"x"−1))/2` and g : Q → R : g(x) = x + 2 be two functions. Then, (gof) `(3/2)` is ____________.
If f : R → R, g : R → R and h : R → R are such that f(x) = x2, g(x) = tan x and h(x) = log x, then the value of (go(foh)) (x), if x = 1 will be ____________.
Let f : R → R be the functions defined by f(x) = x3 + 5. Then f-1(x) is ____________.
Consider the function f in `"A = R" - {2/3}` defiend as `"f"("x") = (4"x" + 3)/(6"x" - 4)` Find f-1.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Two neighbors X and Y ∈ I. X exercised his voting right while Y did not cast her vote in a general election - 2019. Which of the following is true?
The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-
Domain of the function defined by `f(x) = 1/sqrt(sin^2 - x) log_10 (cos^-1 x)` is:-
Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-
If f: A → B and G B → C are one – one, then g of A → C is
If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).