मराठी

Consider F: `R_+ -> [-5, Infinite]` Given by `F(X) = 9x^2 + 6x - 5`. Show that F is Invertible with `F^(-1) (Y) ((Sqrt(Y + 6)-1)/3) Find Fpower(-1)(10) Where R+ Is the Set of All Non-negative Real Numbers. - Mathematics

Advertisements
Advertisements

प्रश्न

Consider f: `R_+ -> [-5, oo]` given by `f(x) = 9x^2 + 6x - 5`. Show that f is invertible with `f^(-1) (y) ((sqrt(y + 6)-1)/3)`

Hence Find

1) `f^(-1)(10)`

2) y if `f^(-1) (y) = 4/3`

where R+ is the set of all non-negative real numbers.

उत्तर

f: `R_+ -> [-5, oo]` given by `f(x) = 9x^2 + 6x - 5`

To show: is one-one and onto.

Let us assume that f is not one-one.

Therefore there exist two or more numbers for which images are same.

For x1, x2 ∈ R+ and x1 ≠ x2

Since x1 and x2 are positive,

9(x1 + x2) + 6 > 0

∴ x1 − x2 = 0⇒ x1 = x2

Therefore, it contradicts our assumption.

Hence the function f is one-one.

Now, let is prove that f is onto.

A function f : X → Y is onto if for every y ∈ Y, there exist a pre-image in X.

f(x) = 9x2 + 6x −5

= 9x2 + 6x + 1 - 6

=(3x + 1)- 6

Now, for all x ∈ R+ or [0,∞), f(x) ∈ [−5, ∞)

∴ Range = co-domain.

Hence, f is onto.

Therefore, function f is invertible.

Now, let y = 9x2 + 6x − 5

1) `f^(-1) (10) = (sqrt(10+6)-1)/3 = (4-1)/3 = 1`

2) `f^(-1) (y) = 4/3`

`:.(sqrt(y + 6) -1)/3 = 4/3`

`=> sqrt(y + 6)-1 = 4`

`=> sqrt(y+6) = 5`

`=> y + 6 = 25`

=> y = 19

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Delhi Set 1

संबंधित प्रश्‍न

If the function f : R → R be defined by f(x) = 2x − 3 and g : R → R by g(x) = x3 + 5, then find the value of (fog)−1 (x).


Let f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} be given by = {(1, 2), (3, 5), (4, 1)} and = {(1, 3), (2, 3), (5, 1)}. Write down gof.


Let fg and h be functions from to R. Show that

`(f + g)oh = foh + goh`

`(f.g)oh = (foh).(goh)`


Find gof and fog, if  f(x) = |x| and g(x) = |5x - 2|


Find goand fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`

 


if f(x) = `(4x + 3)/(6x - 4), x ≠  2/3` show that fof(x) = x, for all x ≠ 2/3 . What is the inverse of f?


Consider fR+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`


Consider f: {1, 2, 3} → {abc} given by f(1) = af(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.


Let f: W → W be defined as f(n) = n − 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.


Let f : W → W be defined as f(x) = x − 1 if x is odd and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.


If f : R → R, f(x) = x and g: R → R , g(x) =  2x+ 1, and R is the set of real numbers, then find fog(x) and gof (x)


Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by g (x) = αx + β, then what value should be assigned to α and β


Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.


Let f: R → R be the function defined by f(x) = sin (3x+2) ∀ x ∈ R. Then f is invertible.


Every function is invertible.


If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.


Let f : R – `{3/5}`→ R be defined by f(x) = `(3"x" + 2)/(5"x" - 3)` Then ____________.


Which one of the following functions is not invertible?


The inverse of the function `"y" = (10^"x" - 10^-"x")/(10^"x" + 10^-"x")` is ____________.


`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?


The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-


Domain of the function defined by `f(x) = 1/sqrt(sin^2 - x) log_10 (cos^-1 x)` is:-


Let A = `{3/5}` and B = `{7/5}` Let f: A → B: f(x) = `(7x + 4)/(5x - 3)` and g:B → A: g(y) = `(3y + 4)/(5y - 7)` then (gof) is equal to


Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-


If f: A → B and G B → C are one – one, then g of A → C is


If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×