मराठी

The Cost Function of a Product is Given by C(X) = X 3 3 − 45 X 2 − 900 X + 36 Where X is the Number of Units - Mathematics

Advertisements
Advertisements

प्रश्न

The cost function of a product is given by C(x) =`x^3/3 - 45x^2 -  900x + 36` where x is the number of units produced. How many units should be produced to minimise the marginal cost?

बेरीज

उत्तर

`C(x) = x^3/3- 45x^2 + 900x + 36`
`(dc(x))/dx = x^2 - 90x - 900=M(x)`

= Marginalcost
`(dc(x))/dx = x^2 - 90x - 900 = M(x)`
                                              = marginal cost
`(d^2c(x))/dx^2 = (2x-90=dM(x))/dx `
 
`therefore (d^2M(x))/dx^2 = 2 > 0`

`therefore (dM(x))/dx ` is minimum
To be minimum
`(dM(x))/dx =0`
2x - 90 =0
2x = 90
x= 45

shaalaa.com
Application of Calculus in Commerce and Economics in the Marginal Cost and Its Interpretation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) Set 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×