मराठी

The total cost function for x units is given by C(x) = 6x+5+2500. Show that the marginal cost decreases as the output x increases. - Mathematics

Advertisements
Advertisements

प्रश्न

The total cost function for x units is given by C(x) = `sqrt(6x + 5) + 2500`. Show that the marginal cost decreases as the output x increases.

बेरीज

उत्तर

Cost function

C(x) = `sqrt(6x + 5) + 2500`

∴ Marginal Cost

M.C. = `(dC)/dx`

= `d/dx (sqrt(6x + 5) + 2500)`

= `1/(2sqrt(6x + 5)) xx 6 + 0`

= `3/sqrt(6x + 5)`

Again differentiate w.r. to ‘x’

`d/dx (M.C.) = d/dx (3/sqrt(6x + 5))`

= `3 xx ((-1)/2) (6x + 5)^(-3//2) xx 6`

= `(-9)/(6x + 5)^(3//2)`

Which is negative for all x.

Hence, the marginal cost decreases as the output x increases.

shaalaa.com
Application of Calculus in Commerce and Economics in the Marginal Cost and Its Interpretation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×