मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

The cumulative distribution function of a discrete random variable is given byF(x) = {0 -∞<x<-10.15-1≤x<00.350≤x<10.601≤x<20.852≤x<313≤x<∞Find P(X < 1) - Mathematics

Advertisements
Advertisements

प्रश्न

The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)

तक्ता
बेरीज

उत्तर

Given F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`

The value of 'x' are –1, 0, 1, 2, 3

F(–1) = P(X = –1)

= F(–1) – F(–1)

= 0.15 – 0

= 0.15

F(0) = P(X = 0)

= F(0) – F(–1)

= 0.35 – 0.15

= 0.20

F(1) = P(X = 1)

= F(1) – F(0)

= 0.60 – 0.35 =

0.25

F(2) = P(X = 2)

= F(2) – F(1)

= 0.85 – 0.60

= 0.25

F(3) = P(X = 3)

= F(3) – F(2)

= 1 – 0.85

= 0.15

P(X < 1) = P(X = –1) + P(X = 0)

= 0.15 + 0.20

= 0.35

shaalaa.com
Types of Random Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Probability Distributions - Exercise 11.2 [पृष्ठ १९४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 11 Probability Distributions
Exercise 11.2 | Q 5. (ii) | पृष्ठ १९४

संबंधित प्रश्‍न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find

P( x < 1) 


Solve the following problem :

A player tosses two coins. He wins ₹ 10 if 2 heads appear, ₹ 5 if 1 head appears, and ₹ 2 if no head appears. Find the expected value and variance of winning amount.


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Verify whether f(x) is a p.d.f.


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find P(0 < X ≤ 1).


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

An economist is interested in knowing the number of unemployed graduates in the town with a population of 1 lakh.


A coin is tossed 10 times. The probability of getting exactly six heads is ______.


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find cumulative distribution function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X ≥ 2)


Choose the correct alternative:

A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is


Choose the correct alternative:

Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent and let X equal the total number of heads that result. The value of E[X] is


Choose the correct alternative:

Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.


Let X = time (in minutes) that lapses between the ringing of the bell at the end of a lecture and the actual time when the professor ends the lecture. Suppose X has p.d.f.

f(x) = `{(kx^2","      0 ≤ x ≤ 2), (0","         "othenwise"):}`

Then, the probability that the lecture ends within 1 minute of the bell ringing is ______


If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______


For a random variable X, if Var (X) = 5 and E (X2) = 21, the value of E (X) is ______


X is a continuous random variable with a probability density function

f(x) = `{{:(x^2/4 + k;     0 ≤ x ≤ 2),(0;              "otherwise"):}`

The value of k is equal to ______


The probability distribution of a random variable X is given below.

X = k 0 1 2 3 4
P(X = k) 0.1 0.4 0.3 0.2 0

The variance of X is ______


A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) = ______.


For the following distribution function F(x) of a rv.x.

x 1 2 3 4 5 6
F(x) 0.2 0.37 0.48 0.62 0.85 1

P(3 < x < 5) =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×