हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

The cumulative distribution function of a discrete random variable is given byF(x) = {0 -∞<x<-10.15-1≤x<00.350≤x<10.601≤x<20.852≤x<313≤x<∞Find P(X < 1) - Mathematics

Advertisements
Advertisements

प्रश्न

The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)

सारिणी
योग

उत्तर

Given F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`

The value of 'x' are –1, 0, 1, 2, 3

F(–1) = P(X = –1)

= F(–1) – F(–1)

= 0.15 – 0

= 0.15

F(0) = P(X = 0)

= F(0) – F(–1)

= 0.35 – 0.15

= 0.20

F(1) = P(X = 1)

= F(1) – F(0)

= 0.60 – 0.35 =

0.25

F(2) = P(X = 2)

= F(2) – F(1)

= 0.85 – 0.60

= 0.25

F(3) = P(X = 3)

= F(3) – F(2)

= 1 – 0.85

= 0.15

P(X < 1) = P(X = –1) + P(X = 0)

= 0.15 + 0.20

= 0.35

shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Probability Distributions - Exercise 11.2 [पृष्ठ १९४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 11 Probability Distributions
Exercise 11.2 | Q 5. (ii) | पृष्ठ १९४

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2)`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P (–0·5 < x or x > 0·5)


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( x < –2)


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X=x) k 2k 2k 3k k2 2k2 7k2+k

k = 


The p.m.f. of a r.v. X is given by P (X = x) =`("" ^5 C_x ) /2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise.

Then show that P (X ≤ 2) = P (X ≥ 3).


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Amount of syrup prescribed by a physician.


The probability distribution of a r.v. X is

X = x -3 -2 -1 0 1
P(X = x) 0.3 0.2 0.25 0.1 0.15

Then F (-1) = ?


A random variable X has the following probability distribution:

X = x 0 1 2 3
P (X = x) `1/10` `1/2` `1/5` k

Then the value of k is


Find the probability mass function and cumulative distribution function of a number of girl children in families with 4 children, assuming equal probabilities for boys and girls


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(2 ≤ X < 5)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X ≥ 2)


Choose the correct alternative:

Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent and let X equal the total number of heads that result. The value of E[X] is


Choose the correct alternative:

The probability mass function of a random variable is defined as:

x – 2 – 1 0 1 2
f(x) k 2k 3k 4k 5k

Then E(X ) is equal to:


For a random variable X, if Var (X) = 5 and E (X2) = 21, the value of E (X) is ______


The probability distribution of a random variable X is given below. If its mean is 4.2, then the values of a and bar respectively 

X = x 1 2 3 4 5 6
P(X = x) a a a b b 0.3

Two coins are tossed. Then the probability distribution of number of tails is.


Two cards are randomly drawn, with replacement. from a well shuffled deck of 52 playing cards. Find the probability distribution of the number of aces drawn.


At random variable X – B(n, p), if values of mean and variance of X are 18 and 12 respectively, then total number of possible values of X are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×