हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

The cumulative distribution function of a discrete random variable is given byF(x) = {0 -∞<x<-10.15-1≤x<00.350≤x<10.601≤x<20.852≤x<313≤x<∞Find P(X ≥ 2) - Mathematics

Advertisements
Advertisements

प्रश्न

The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)

सारिणी
योग

उत्तर

Given F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`

The value of 'x' are –1, 0, 1, 2, 3

F(–1) = P(X = –1)

= F(–1) – F(–1)

= 0.15 – 0

= 0.15

F(0) = P(X = 0)

= F(0) – F(–1)

= 0.35 – 0.15

= 0.20

F(1) = P(X = 1)

= F(1) – F(0)

= 0.60 – 0.35 =

0.25

F(2) = P(X = 2)

= F(2) – F(1)

= 0.85 – 0.60

= 0.25

F(3) = P(X = 3)

= F(3) – F(2)

= 1 – 0.85

= 0.15

P(X ≥ 2) = P(X = 2) + P(X = 3)

= 0.25 + 0.15

= 0.40

shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Probability Distributions - Exercise 11.2 [पृष्ठ १९४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 11 Probability Distributions
Exercise 11.2 | Q 5. (iii) | पृष्ठ १९४

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2 )`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P(x > 0)


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

An economist is interested the number of unemployed graduate in the town of population 1 lakh.


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Verify whether f(x) is a p.d.f.


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find probability that X is between 1 and 3..


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


Fill in the blank :

The values of discrete r.v. are generally obtained by _______


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Twelve of 20 white rats available for an experiment are male. A scientist randomly selects 5 rats and counts the number of female rats among them.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A highway safety group is interested in the speed (km/hrs) of a car at a check point.


Out of 100 people selected at random, 10 have common cold. If five persons selected at random from the group, then the probability that at most one person will have common cold is ______.


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(4 ≤ X < 10)


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find P(X ≥ 1)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k


If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by

X = x - 1.5 -0.5 0.5 1.5 2.5
P(X = x) 0.05 0.2 0.15 0.25 0.35

then, F(1.5) - F(- 0.5) = ?


Choose the correct alternative:

The probability mass function of a random variable is defined as:

x – 2 – 1 0 1 2
f(x) k 2k 3k 4k 5k

Then E(X ) is equal to:


Let X = time (in minutes) that lapses between the ringing of the bell at the end of a lecture and the actual time when the professor ends the lecture. Suppose X has p.d.f.

f(x) = `{(kx^2","      0 ≤ x ≤ 2), (0","         "othenwise"):}`

Then, the probability that the lecture ends within 1 minute of the bell ringing is ______


If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.


A random variable X has the following probability distribution:

X 1 2 3 4
P(X) `1/3` `2/9` `1/3` `1/9`

1hen, the mean of this distribution is ______ 


For the following distribution function F(x) of a rv.x.

x 1 2 3 4 5 6
F(x) 0.2 0.37 0.48 0.62 0.85 1

P(3 < x < 5) =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×