हिंदी

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f. f (x) = k (4–x2), for –2 ≤ x ≤ 2 and = 0 otherwise. P(x > 0) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2 )`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P(x > 0)

योग

उत्तर

Since, f is the p.d.f. of X,

` int_(-∞)^∞ f (x) dx` = 1

∴ ` int_(-∞)^-2 f (x) dx` +` int_(-2)^2 f (x) dx` + ` int_(2)^∞f (x) dx`= 1

∴ 0 + ` int_(-2)^2 k (4 -x^2) dx` = 1

∴ k ` int_(-2)^2  (4 -x^2) dx` = 1

∴ k` [ 4x - x^3/3]_-2^2` = 1

∴ k `[(8-8/3)-(-8+8/3)]`= 1

∴ k`(16/3+16/3)` = 1

∴ k`(32/3)` = 1

∴ k = `3/32`

P(x > 0)

= ` int_(0)^∞ f (x) dx`

= ` int_(0)^2 f (x) dx`+ ` int_(2)^∞ f (x) dx`

= ` int_(0)^2 k (4-x^2) dx+ 0`

= k` int_(0)^2  (4-x^2) dx`

=`3/32[4x -x^3/3]_0^2`  ..........[∵ k=`3/32`]

=`3/32 [8-8/3] = 3/32 xx16/3 = 1/2`

shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Probability Distributions - Exercise 7.2 [पृष्ठ २३९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Exercise 7.2 | Q 7.1 | पृष्ठ २३९
बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Miscellaneous Exercise 2 | Q 13.1 | पृष्ठ २४४

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2)`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P (–0·5 < x or x > 0·5)


Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find

P( x < 1) 


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( x < –2)


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( X > 0)


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

An economist is interested the number of unemployed graduate in the town of population 1 lakh.


In the p.m.f. of r.v. X

X 1 2 3 4 5
P (X) `1/20` `3/20` a 2a `1/20`

Find a and obtain c.d.f. of X. 


Solve the following problem :

A player tosses two coins. He wins ₹ 10 if 2 heads appear, ₹ 5 if 1 head appears, and ₹ 2 if no head appears. Find the expected value and variance of winning amount.


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find probability that X is between 1 and 3..


Fill in the blank :

The value of continuous r.v. are generally obtained by _______


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

An economist is interested in knowing the number of unemployed graduates in the town with a population of 1 lakh.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Amount of syrup prescribed by a physician.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Twelve of 20 white rats available for an experiment are male. A scientist randomly selects 5 rats and counts the number of female rats among them.


A coin is tossed 10 times. The probability of getting exactly six heads is ______.


Out of 100 people selected at random, 10 have common cold. If five persons selected at random from the group, then the probability that at most one person will have common cold is ______.


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find the value of k


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find cumulative distribution function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(2 ≤ X < 5)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find the probability mass function


If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by

X = x - 1.5 -0.5 0.5 1.5 2.5
P(X = x) 0.05 0.2 0.15 0.25 0.35

then, F(1.5) - F(- 0.5) = ?


Choose the correct alternative:

A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is


Choose the correct alternative:

Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.


Choose the correct alternative:

The probability mass function of a random variable is defined as:

x – 2 – 1 0 1 2
f(x) k 2k 3k 4k 5k

Then E(X ) is equal to:


A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is ______.


If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.


If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______


For a random variable X, if Var (X) = 5 and E (X2) = 21, the value of E (X) is ______


The probability distribution of a random variable X is given below.

X = k 0 1 2 3 4
P(X = k) 0.1 0.4 0.3 0.2 0

The variance of X is ______


A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.


Two coins are tossed. Then the probability distribution of number of tails is.


The c.d.f. of a discrete r.v. x is 

x 0 1 2 3 4 5
F(x) 0.16 0.41 0.56 0.70 0.91 1.00

Then P(1 < x ≤ 4) = ______ 


The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


The p.d.f. of a continuous random variable X is

f(x) = 0.1 x, 0 < x < 5

= 0, otherwise

Then the value of P(X > 3) is ______ 


If f(x) = `k/2^x` is a probability distribution of a random variable X that can take on the values x = 0, 1, 2, 3, 4. Then, k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×