हिंदी

Given the p.d.f. of a continuous r.v. X , f (x) = x23 ,for –1 < x < 2 and = 0 otherwise Determine c.d.f. of X hence find P( x < 1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find

P( x < 1) 

योग

उत्तर

Let F(x) be the c.d.f. of X

Then F(x) = ` int_(-∞)^x f (x) dx`

=` int_(-∞)^-1 f (x) dx + int_(-1)^x f (x) dx`

= 0 + `int_(-1)^x  x^2/3 dx = 1/3int_(-1)^x  x^2 dx`

= `1/3[x^3/3]_-1^x`

= `1/3[x^3/3-(-1/3)]`

∴ f(x) = `(x^3+1)/9`

P( x < 1)  = `F (1) - F (-1) - [(1^3 + 1)/9]- [((-1)^3 + 1)/9]- (2-0)/9-2/9`

shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Probability Distributions - Exercise 7.2 [पृष्ठ २३९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Exercise 7.2 | Q 9.1 | पृष्ठ २३९

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2 )`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P(x > 0)


Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2)`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P (–0·5 < x or x > 0·5)


The following is the p.d.f. of continuous r.v.

f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find expression for c.d.f. of X


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P(1 < x < 2)


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X=x) k 2k 2k 3k k2 2k2 7k2+k

k = 


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Verify whether f(x) is a p.d.f.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

An economist is interested in knowing the number of unemployed graduates in the town with a population of 1 lakh.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Amount of syrup prescribed by a physician.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A person on high protein diet is interested in the weight gained in a week.


A random variable X has the following probability distribution:

X = x 0 1 2 3
P (X = x) `1/10` `1/2` `1/5` k

Then the value of k is


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(X ≥ 6)


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find cumulative distribution function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(X > 3)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X ≥ 2)


If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by

X = x - 1.5 -0.5 0.5 1.5 2.5
P(X = x) 0.05 0.2 0.15 0.25 0.35

then, F(1.5) - F(- 0.5) = ?


Choose the correct alternative:

A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is


Choose the correct alternative:

Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.


Let X = time (in minutes) that lapses between the ringing of the bell at the end of a lecture and the actual time when the professor ends the lecture. Suppose X has p.d.f.

f(x) = `{(kx^2","      0 ≤ x ≤ 2), (0","         "othenwise"):}`

Then, the probability that the lecture ends within 1 minute of the bell ringing is ______


If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______


A random variable X has the following probability distribution:

X 1 2 3 4
P(X) `1/3` `2/9` `1/3` `1/9`

1hen, the mean of this distribution is ______ 


X is a continuous random variable with a probability density function

f(x) = `{{:(x^2/4 + k;     0 ≤ x ≤ 2),(0;              "otherwise"):}`

The value of k is equal to ______


The probability distribution of a random variable X is given below. If its mean is 4.2, then the values of a and bar respectively 

X = x 1 2 3 4 5 6
P(X = x) a a a b b 0.3

The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


A random variable X has the following probability distribution:

X = xi 1 2 3 4
P(X = xi) 0.2 0.15 0.3 0.35

The mean and the variance are respectively ______.


Two cards are randomly drawn, with replacement. from a well shuffled deck of 52 playing cards. Find the probability distribution of the number of aces drawn.


A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×