Advertisements
Advertisements
प्रश्न
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(X ≥ 6)
उत्तर
Let X be the random variable denotes the total score in two thrown of a die.
Sample space S
I\II | 1 | 3 | 3 | 5 | 5 | 5 |
1 | 2 | 4 | 4 | 6 | 6 | 6 |
3 | 4 | 6 | 6 | 8 | 8 | 8 |
3 | 4 | 6 | 6 | 8 | 8 | 8 |
5 | 6 | 8 | 8 | 10 | 10 | 10 |
5 | 6 | 8 | 8 | 10 | 10 | 10 |
5 | 6 | 8 | 8 | 10 | 10 | 10 |
n(S) = 36
X = {2, 4, 6, 8, 10}
Values of the random variable | 2 | 4 | 6 | 8 | 10 | Total |
Number of elements in inverse image | 1 | 4 | 10 | 12 | 9 | 36 |
Cumulative distribution function
P(X ≥ 6) = P(X = 6) + P(X = 8) + P(X = 10)
= `10/36 + 12/36 + 9/36`
= `31/36`
APPEARS IN
संबंधित प्रश्न
Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
`"f(x)" = {("k"(4 - x^2) "for –2 ≤ x ≤ 2,"),(0 "otherwise".):}`
P(–1 < x < 1)
Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
f (x) = k `(4 – x^2)`, for –2 ≤ x ≤ 2 and = 0 otherwise.
P (–0·5 < x or x > 0·5)
In the p.m.f. of r.v. X
X | 1 | 2 | 3 | 4 | 5 |
P (X) | `1/20` | `3/20` | a | 2a | `1/20` |
Find a and obtain c.d.f. of X.
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
A highway safety group is interested in the speed (km/hrs) of a car at a check point.
A coin is tossed 10 times. The probability of getting exactly six heads is ______.
Find the probability mass function and cumulative distribution function of a number of girl children in families with 4 children, assuming equal probabilities for boys and girls
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find the probability mass function
If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by
X = x | - 1.5 | -0.5 | 0.5 | 1.5 | 2.5 |
P(X = x) | 0.05 | 0.2 | 0.15 | 0.25 | 0.35 |
then, F(1.5) - F(- 0.5) = ?
Choose the correct alternative:
Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.
Let X = time (in minutes) that lapses between the ringing of the bell at the end of a lecture and the actual time when the professor ends the lecture. Suppose X has p.d.f.
f(x) = `{(kx^2"," 0 ≤ x ≤ 2), (0"," "othenwise"):}`
Then, the probability that the lecture ends within 1 minute of the bell ringing is ______
A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is ______.
X is a continuous random variable with a probability density function
f(x) = `{{:(x^2/4 + k; 0 ≤ x ≤ 2),(0; "otherwise"):}`
The value of k is equal to ______
The c.d.f. of a discrete r.v. x is
x | 0 | 1 | 2 | 3 | 4 | 5 |
F(x) | 0.16 | 0.41 | 0.56 | 0.70 | 0.91 | 1.00 |
Then P(1 < x ≤ 4) = ______
The c.d.f. of a discrete r.v. X is
X = x | -4 | -2 | -1 | 0 | 2 | 4 | 6 | 8 |
F(x) | 0.2 | 0.4 | 0.55 | 0.6 | 0.75 | 0.80 | 0.95 | 1 |
Then P(X ≤ 4|X > -1) = ?
At random variable X – B(n, p), if values of mean and variance of X are 18 and 12 respectively, then total number of possible values of X are ______.
For the following distribution function F(x) of a rv.x.
x | 1 | 2 | 3 | 4 | 5 | 6 |
F(x) | 0.2 | 0.37 | 0.48 | 0.62 | 0.85 | 1 |
P(3 < x < 5) =
If f(x) = `k/2^x` is a probability distribution of a random variable X that can take on the values x = 0, 1, 2, 3, 4. Then, k is equal to ______.