हिंदी

In the p.m.f. of r.v. X X 1 2 3 4 5 P (X) 120 320 a 2a 120 Find a and obtain c.d.f. of X. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In the p.m.f. of r.v. X

X 1 2 3 4 5
P (X) `1/20` `3/20` a 2a `1/20`

Find a and obtain c.d.f. of X. 

योग

उत्तर

For p.m.f. of a r.v. X

`sum_("i" = 1)^5` P(X = x) = 1

∴ P(X = 1) +  P(X = 2) + P(X = 3) +  P(X = 4) + P(X = 5) = 1

∴ `1/20 + 3/20+ "a" + 2"a" + 1/20 = 1`

∴ 3a = `1 - 5/20`

∴ 3a = `1 - 1/4`

∴ 3a =`3/4`

∴ a = `1/4`

∴ The p.m.f. of the r.v. X is

X = x 1 2 3 4 5
P(X = x) `1/20` `3/20` `5/20` `10/20` `1/20`

Let F(x) be the c.d.f. of X.

Then F(x) = P(X ≤ x)

∴ F(1) = P(X ≤ 1) =  P(X = 1) = `1/20`

F(2) = P(X≤ 2) =  P(X = 1) +  P(X = 2)

= `1/20 + 3/20`

= `4/20`

= `1/5`

F(3) = P(X ≤ 3) =  P(X = 1) +  P(X = 2) + P(X = 3)

= `1/20 + 3/20 + 5/20`

= `9/20`

F(4) = P(X ≤ 4) =  P(X = 1) +  P(X = 2) + P(X = 3) + P(X = 4)

= `1/20 + 3/20 + 5/20 + 10/20`

= `19/20`

F(5) = P(X ≤ 5) =  P(X = 1) +  P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) 

= `1/20 + 3/20 + 5/20 + 10/20 + 1/20`

= `20/20`

= 1

Hence, the c.d.f. of the random variable X is as follows:

xi 1 2 3 4 5
F(xi) `1/20` `1/5` `9/20` `19/20` 1
shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.7: Probability Distributions - Short Answers I

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Miscellaneous Exercise 2 | Q 5 | पृष्ठ २४२

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P(1 < x < 2)


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( X > 0)


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X=x) k 2k 2k 3k k2 2k2 7k2+k

k = 


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Verify whether f(x) is a p.d.f.


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find P(0 < X ≤ 1).


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


Fill in the blank :

The value of continuous r.v. are generally obtained by _______


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Amount of syrup prescribed by a physician.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A person on high protein diet is interested in the weight gained in a week.


The probability distribution of a r.v. X is

X = x -3 -2 -1 0 1
P(X = x) 0.3 0.2 0.25 0.1 0.15

Then F (-1) = ?


A random variable X has the following probability distribution:

X = x 0 1 2 3
P (X = x) `1/10` `1/2` `1/5` k

Then the value of k is


Out of 100 people selected at random, 10 have common cold. If five persons selected at random from the group, then the probability that at most one person will have common cold is ______.


Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative distribution function


Find the probability mass function and cumulative distribution function of a number of girl children in families with 4 children, assuming equal probabilities for boys and girls


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find P(X ≥ 1)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(2 ≤ X < 5)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(X > 3)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find the probability mass function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X < 3)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X ≥ 2)


Choose the correct alternative:

Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.


Let X = time (in minutes) that lapses between the ringing of the bell at the end of a lecture and the actual time when the professor ends the lecture. Suppose X has p.d.f.

f(x) = `{(kx^2","      0 ≤ x ≤ 2), (0","         "othenwise"):}`

Then, the probability that the lecture ends within 1 minute of the bell ringing is ______


A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is ______.


If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.


If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______


The probability distribution of a random variable X is given below. If its mean is 4.2, then the values of a and bar respectively 

X = x 1 2 3 4 5 6
P(X = x) a a a b b 0.3

The probability distribution of a random variable X is given below.

X = k 0 1 2 3 4
P(X = k) 0.1 0.4 0.3 0.2 0

The variance of X is ______


A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×