Advertisements
Advertisements
प्रश्न
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
Amount of syrup prescribed by a physician.
उत्तर
Let X = amount of syrup prescribed by a physician.
Here, X can take any positive or fractional value, i.e, X takes uncountably infinite values.
∴ X is a continuous r.v.
APPEARS IN
संबंधित प्रश्न
The following is the p.d.f. of continuous r.v.
f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find expression for c.d.f. of X
Given the p.d.f. of a continuous r.v. X ,
f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find P( X > 0)
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
An economist is interested the number of unemployed graduate in the town of population 1 lakh.
Fill in the blank :
The values of discrete r.v. are generally obtained by _______
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
An economist is interested in knowing the number of unemployed graduates in the town with a population of 1 lakh.
A coin is tossed 10 times. The probability of getting exactly six heads is ______.
A random variable X has the following probability distribution:
X = x | 0 | 1 | 2 | 3 |
P (X = x) | `1/10` | `1/2` | `1/5` | k |
Then the value of k is
Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative distribution function
Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by
`f(x) = {{:((x^2 + 1)/k"," "for" x = 0"," 1"," 2),(0"," "otherwise"):}`
Find the value of k
Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by
`f(x) = {{:((x^2 + 1)/k"," "for" x = 0"," 1"," 2),(0"," "otherwise"):}`
Find cumulative distribution function
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find the value of k
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find P(X < 3)
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find P(X ≥ 2)
If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by
X = x | - 1.5 | -0.5 | 0.5 | 1.5 | 2.5 |
P(X = x) | 0.05 | 0.2 | 0.15 | 0.25 | 0.35 |
then, F(1.5) - F(- 0.5) = ?
A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.
A random variable X has the following probability distribution:
X = xi | 1 | 2 | 3 | 4 |
P(X = xi) | 0.2 | 0.15 | 0.3 | 0.35 |
The mean and the variance are respectively ______.
For the following distribution function F(x) of a rv.x.
x | 1 | 2 | 3 | 4 | 5 | 6 |
F(x) | 0.2 | 0.37 | 0.48 | 0.62 | 0.85 | 1 |
P(3 < x < 5) =