हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

A random variable X has the following probability mass function. x 1 2 3 4 5 F(x) k2 2k2 3k2 2k 3k Find the value of k - Mathematics

Advertisements
Advertisements

प्रश्न

A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k

सारिणी
योग

उत्तर

Given f(x) in a probability mass function

`sum_x` f(x) = 1

k2 + 2k2 + 3k2 + 2k + 3k = 1

6k2 + 5k = 1

6k2 + 5k – 1 = 0

(k + 1)(6k – 1) = 0

k = `1/6`

k ≠ –1 neglecting negative terms

Probability mass function

x 1 2 3 4 5
F(x) `1/36` `2/36` `3/36` `2/6` `3/6`
shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Probability Distributions - Exercise 11.2 [पृष्ठ १९४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 11 Probability Distributions
Exercise 11.2 | Q 6. (i) | पृष्ठ १९४

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2 )`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P(x > 0)


The following is the p.d.f. of continuous r.v.

f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find expression for c.d.f. of X


Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find

P( x < 1) 


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( x < –2)


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Verify whether f(x) is a p.d.f.


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


A coin is tossed 10 times. The probability of getting exactly six heads is ______.


Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(4 ≤ X < 10)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(2 ≤ X < 5)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find the probability mass function


Choose the correct alternative:

Suppose that X takes on one of the values 0, 1 and 2. If for some constant k, P(X = i) = kP(X = i – 1) for i = 1, 2 and P(X = 0) = `1/7`. Then the value of k is


X is a continuous random variable with a probability density function

f(x) = `{{:(x^2/4 + k;     0 ≤ x ≤ 2),(0;              "otherwise"):}`

The value of k is equal to ______


The probability distribution of a random variable X is given below.

X = k 0 1 2 3 4
P(X = k) 0.1 0.4 0.3 0.2 0

The variance of X is ______


The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


A random variable X has the following probability distribution:

X = xi 1 2 3 4
P(X = xi) 0.2 0.15 0.3 0.35

The mean and the variance are respectively ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×