Advertisements
Advertisements
प्रश्न
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(4 ≤ X < 10)
उत्तर
Let X be the random variable denotes the total score in two thrown of a die.
Sample space S
I\II | 1 | 3 | 3 | 5 | 5 | 5 |
1 | 2 | 4 | 4 | 6 | 6 | 6 |
3 | 4 | 6 | 6 | 8 | 8 | 8 |
3 | 4 | 6 | 6 | 8 | 8 | 8 |
5 | 6 | 8 | 8 | 10 | 10 | 10 |
5 | 6 | 8 | 8 | 10 | 10 | 10 |
5 | 6 | 8 | 8 | 10 | 10 | 10 |
n(S) = 36
X = {2, 4, 6, 8, 10}
Values of the random variable | 2 | 4 | 6 | 8 | 10 | Total |
Number of elements in inverse image | 1 | 4 | 10 | 12 | 9 | 36 |
Cumulative distribution function
P(4 ≤ X < 10) = P(X = 4) + P(X = 6) + P(X = 8)
= `4/36 + 10/36 + 12/36`
= `26/36`
= `13/18`
APPEARS IN
संबंधित प्रश्न
The following is the p.d.f. of continuous r.v.
f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find expression for c.d.f. of X
Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find
P( x < 1)
Given the p.d.f. of a continuous r.v. X ,
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find P(1 < x < 2)
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X=x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2+k |
k =
Solve the following problem :
A player tosses two coins. He wins ₹ 10 if 2 heads appear, ₹ 5 if 1 head appears, and ₹ 2 if no head appears. Find the expected value and variance of winning amount.
It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.
f(x) = `{(x^3/(64), "for" 0 ≤ x ≤ 4),(0, "otherwise."):}`
Find P(0 < X ≤ 1).
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
Twelve of 20 white rats available for an experiment are male. A scientist randomly selects 5 rats and counts the number of female rats among them.
A random variable X has the following probability distribution:
X = x | 0 | 1 | 2 | 3 |
P (X = x) | `1/10` | `1/2` | `1/5` | k |
Then the value of k is
Find the probability mass function and cumulative distribution function of a number of girl children in families with 4 children, assuming equal probabilities for boys and girls
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find the value of k
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find P(2 ≤ X < 5)
Choose the correct alternative:
Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.
Choose the correct alternative:
The probability mass function of a random variable is defined as:
x | – 2 | – 1 | 0 | 1 | 2 |
f(x) | k | 2k | 3k | 4k | 5k |
Then E(X ) is equal to:
If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.
If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______
X is a continuous random variable with a probability density function
f(x) = `{{:(x^2/4 + k; 0 ≤ x ≤ 2),(0; "otherwise"):}`
The value of k is equal to ______
The probability distribution of a random variable X is given below.
X = k | 0 | 1 | 2 | 3 | 4 |
P(X = k) | 0.1 | 0.4 | 0.3 | 0.2 | 0 |
The variance of X is ______
A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.
The c.d.f. of a discrete r.v. x is
x | 0 | 1 | 2 | 3 | 4 | 5 |
F(x) | 0.16 | 0.41 | 0.56 | 0.70 | 0.91 | 1.00 |
Then P(1 < x ≤ 4) = ______
The p.d.f. of a continuous random variable X is
f(x) = 0.1 x, 0 < x < 5
= 0, otherwise
Then the value of P(X > 3) is ______