हिंदी

Solve the following problem : A player tosses two coins. He wins ₹ 10 if 2 heads appear, ₹ 5 if 1 head appears, and ₹ 2 if no head appears. Find the expected value and variance of winning amount. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

A player tosses two coins. He wins ₹ 10 if 2 heads appear, ₹ 5 if 1 head appears, and ₹ 2 if no head appears. Find the expected value and variance of winning amount.

योग

उत्तर १

When a coin is tossed twice, the sample space is

S = {HH, HT, TH, HH}

Let X denote the amount he wins.

Then X takes values 10, 5, 2.

P(X = 10) = P(2 heads appear)= `1/ 4`

P(X = 5) = P(1 head appears) = `2/ 4= 1 /2`

P(X = 2) = P(no head appears) = `1/ 4`

We construct the following table to calculate the mean and the variance of X :

xi P(xi) xiP(xi) xi2P(xi)
10 `1/4` `5/2` 25
5 `1/2` `5/2` 25/2
2 `1/4` `1/2`* 1
Total 1 5.5 38.5

From the table ∑xi P(xi) = 5.5, ∑xi2 · P(xi) = 38.5

E(X) = ∑xiP(xi) = 5.5

Var (X) = xiP(xi) - [E(X)]2

= 38.5 - (5.5)2

= 38.5 - 30.25 = 8.25

∴ Hence, expected winning amount ₹ 5.5 and variance of winning amount ₹8.25

shaalaa.com

उत्तर २

Let X denote the winning amount.
∴ Possible values of X are 2, 5, 10

Let P(getting head) = p = `(1)/(2)`

∴ q = 1 – p = `1 - (1)/(2) = (1)/(2)`

∴ P(X = 2) = P(no head) = qq= q2 = `(1)/(4)`

P(X = 5) = P(one head) = pq + qp = 2pq

= `2 xx (1)/(2) xx (1)/(2)`

= `(2)/(4)`

P(X = 10) = P(two heads) = pp = p2 = `(1)/(4)`

∴ The probability distribution of X is as follows:

X = x 2 5 10
P(X = x) `(1)/(4)` `(2)/(4)` `(1)/(4)`

Expected winning amount

= E(X) = \[\sum\limits_{i=1}^{3} x_i\text{P}(x_i)\]

= `2 xx (1)/(4) + 5 xx (2)/(4) + 10 xx (1)/(4)`

= `(2 + 10 + 10)/(4)`

= `(22)/(4)`
= ₹ 5.5

E(X2) = \[\sum\limits_{i=1}^{3} x_i^2\text{P}(x_i)\]

= `(2)^2 xx (1)/(4) + (5)^2 xx (2)/(4) + (10)^2 xx (1)/(4)`

= `(4 + 50 + 100)/(4)`

= `(154)/(4)`

= 38.5

Variance of winning amount
= Var(X) = E(X2) – [E(X)]2

= 38.5 – (5.5)2

= 38.5 – 30.25

= ₹ 8.25

shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Probability Distributions - Miscellaneous Exercise 2 [पृष्ठ २४४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Miscellaneous Exercise 2 | Q 11 | पृष्ठ २४४
बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Part I | Q 1.11 | पृष्ठ १५६

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


The following is the p.d.f. of continuous r.v.

f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find expression for c.d.f. of X


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P(1 < x < 2)


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

An economist is interested the number of unemployed graduate in the town of population 1 lakh.


In the p.m.f. of r.v. X

X 1 2 3 4 5
P (X) `1/20` `3/20` a 2a `1/20`

Find a and obtain c.d.f. of X. 


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find P(0 < X ≤ 1).


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


Fill in the blank :

The values of discrete r.v. are generally obtained by _______


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

An economist is interested in knowing the number of unemployed graduates in the town with a population of 1 lakh.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A person on high protein diet is interested in the weight gained in a week.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Twelve of 20 white rats available for an experiment are male. A scientist randomly selects 5 rats and counts the number of female rats among them.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A highway safety group is interested in the speed (km/hrs) of a car at a check point.


The probability distribution of a r.v. X is

X = x -3 -2 -1 0 1
P(X = x) 0.3 0.2 0.25 0.1 0.15

Then F (-1) = ?


Out of 100 people selected at random, 10 have common cold. If five persons selected at random from the group, then the probability that at most one person will have common cold is ______.


Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative distribution function


Find the probability mass function and cumulative distribution function of a number of girl children in families with 4 children, assuming equal probabilities for boys and girls


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find the value of k


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find cumulative distribution function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find the probability mass function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X < 3)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X ≥ 2)


If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by

X = x - 1.5 -0.5 0.5 1.5 2.5
P(X = x) 0.05 0.2 0.15 0.25 0.35

then, F(1.5) - F(- 0.5) = ?


Choose the correct alternative:

A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is


Choose the correct alternative:

Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent and let X equal the total number of heads that result. The value of E[X] is


Choose the correct alternative:

Suppose that X takes on one of the values 0, 1 and 2. If for some constant k, P(X = i) = kP(X = i – 1) for i = 1, 2 and P(X = 0) = `1/7`. Then the value of k is


Choose the correct alternative:

Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.


Choose the correct alternative:

The probability mass function of a random variable is defined as:

x – 2 – 1 0 1 2
f(x) k 2k 3k 4k 5k

Then E(X ) is equal to:


A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is ______.


If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______


For a random variable X, if Var (X) = 5 and E (X2) = 21, the value of E (X) is ______


The probability distribution of a random variable X is given below. If its mean is 4.2, then the values of a and bar respectively 

X = x 1 2 3 4 5 6
P(X = x) a a a b b 0.3

The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


The p.d.f. of a continuous random variable X is

f(x) = 0.1 x, 0 < x < 5

= 0, otherwise

Then the value of P(X > 3) is ______ 


A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) = ______.


If f(x) = `k/2^x` is a probability distribution of a random variable X that can take on the values x = 0, 1, 2, 3, 4. Then, k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×