हिंदी

Solve the following problem : Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete. A highway safety group is interested in the speed - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A highway safety group is interested in the speed (km/hrs) of a car at a check point.

योग

उत्तर

Let X = speed of the car in km/hr.
X takes uncountably infinite values.
∴ X is a continuous r.v.

shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Probability Distributions - Part I [पृष्ठ १५५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Part I | Q 1.01 | पृष्ठ १५५

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2 )`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P(x > 0)


Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find

P( x < 1) 


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X=x) k 2k 2k 3k k2 2k2 7k2+k

k = 


The p.m.f. of a r.v. X is given by P (X = x) =`("" ^5 C_x ) /2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise.

Then show that P (X ≤ 2) = P (X ≥ 3).


In the p.m.f. of r.v. X

X 1 2 3 4 5
P (X) `1/20` `3/20` a 2a `1/20`

Find a and obtain c.d.f. of X. 


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Verify whether f(x) is a p.d.f.


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find probability that X is between 1 and 3..


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find the value of k


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(X > 3)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X < 3)


Choose the correct alternative:

Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.


The p.m.f. of a random variable X is

P(x) = `(5 - x)/10`,   x = 1, 2, 3, 4
       = 0,            otherwise

The value of E(X) is ______ 


A random variable X has the following probability distribution:

X 1 2 3 4
P(X) `1/3` `2/9` `1/3` `1/9`

1hen, the mean of this distribution is ______ 


X is a continuous random variable with a probability density function

f(x) = `{{:(x^2/4 + k;     0 ≤ x ≤ 2),(0;              "otherwise"):}`

The value of k is equal to ______


Two coins are tossed. Then the probability distribution of number of tails is.


The p.d.f. of a continuous random variable X is

f(x) = 0.1 x, 0 < x < 5

= 0, otherwise

Then the value of P(X > 3) is ______ 


At random variable X – B(n, p), if values of mean and variance of X are 18 and 12 respectively, then total number of possible values of X are ______.


If f(x) = `k/2^x` is a probability distribution of a random variable X that can take on the values x = 0, 1, 2, 3, 4. Then, k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×