हिंदी

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f. f (x) = k (4–x2), for –2 ≤ x ≤ 2 and = 0 otherwise. P (–0·5 < x or x > 0·5) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2)`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P (–0·5 < x or x > 0·5)

योग

उत्तर

Since, f is the p.d.f. of X,

` int_(-∞)^∞ f (x) dx` = 1

∴ ` int_(-∞)^(-2) f (x) dx` +` int_(-2)^(2) f (x) dx` + `int_2^∞f(x) dx = 1`

= 0 + ` int_(-2)^(2) k (4 -x^2) dx + 0 = 1` 

∴ k ` int_(-2)^2  (4 -x^2) dx + 0 = 1`

∴ k` [ 4x - x^3/3]_-2^2` = 1

∴ k `[(8-8/3)-(-8+8/3)]`= 1

∴ k`(16/3+16/3)` = 1

∴ k`(32/3)` = 1

∴ k = `3/32`

P (–0·5 < x or x > 0·5)

= P (x < –0·5) + P (x > – 0·5) 

= `int_(-∞)^-0.5f (x) dx + int_(0.5)^∞f (x) dx`

=` int_(-∞)^-2 f (x) dx + int_(-2)^-0.5 f (x) dx +int_(0.5)^2f (x) dx +  int_(2)^∞ f (x) dx`

= 0+` int_(-2)^(-1/2) k (4 -x^2) dx+ int_(1/2)^2 k (4 -x^2) dx` + 0

= ` k int_(-2)^(-1/2) (4 -x^2) dx+ k int_(1/2)^2 (4 -x^2) dx`

= `3/32[4x-(x^3)/3]_-2^(-1/2)+3/32[4x-(x^3)/3]_(1/2)^2`           .......[∵ k =`3/32`]

= `3/32[(-2+1/24)-(-8+8/3)] + 3/32[(8-8/3)-(2-1/24)]`

= `3/32((-47)/24+16/3)+ 3/32(16/3-47/24)`

= `3/32((-47)/24+16/3+16/3-47/24)`

= `3/32((-47+128+128 -47)/24)`

= `3/32(162/24) = 81/128`

= 0.6328

Alternative Method :

P  (x< – 0·5  or x > 0·5)

= 1 -P( - 0.5 ≤ x ≤ 0.5)

= 1 -` int_(-0.5)^0.5 f (x) dx `

= 1 - ` int_(-1/2)^(1/2) k (4 - x^2) dx`

= 1 - k ` int_(-1/2)^(1/2) (4 - x^2) dx`

= `1-3/32[4x-x^3/3]_(-1/2)^(1/2)`                    ......[∵ k = `3/32`]

= `1 - 3/32[(2-1/24)-(-2+1/24)]`

= `1 - 3/32(2-1/24+2-1/24)`

= `1 - 3/32(4-1/12)`

= `1 - 3/32 xx 47/12`

= `1 - 47/128`

= `(128-47)/128`

= `81/128`

= 0.6328

shaalaa.com
Types of Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Probability Distributions - Exercise 7.2 [पृष्ठ २३९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Exercise 7.2 | Q 7.3 | पृष्ठ २३९
बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Miscellaneous Exercise 2 | Q 13.3 | पृष्ठ २४४

संबंधित प्रश्न

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


The following is the p.d.f. of continuous r.v.

f (x) = `x/8` , for 0 < x < 4 and = 0 otherwise.

Find F(x) at x = 0·5 , 1.7 and 5


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( x < –2)


In the p.m.f. of r.v. X

X 1 2 3 4 5
P (X) `1/20` `3/20` a 2a `1/20`

Find a and obtain c.d.f. of X. 


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find probability that X is between 1 and 3..


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


Fill in the blank :

The value of continuous r.v. are generally obtained by _______


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Amount of syrup prescribed by a physician.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A person on high protein diet is interested in the weight gained in a week.


c.d.f. of a discrete random variable X is


A coin is tossed 10 times. The probability of getting exactly six heads is ______.


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(4 ≤ X < 10)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(2 ≤ X < 5)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(X > 3)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X < 3)


Choose the correct alternative:

A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is


Choose the correct alternative:

Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent and let X equal the total number of heads that result. The value of E[X] is


Choose the correct alternative:

Suppose that X takes on one of the values 0, 1 and 2. If for some constant k, P(X = i) = kP(X = i – 1) for i = 1, 2 and P(X = 0) = `1/7`. Then the value of k is


Choose the correct alternative:

The probability mass function of a random variable is defined as:

x – 2 – 1 0 1 2
f(x) k 2k 3k 4k 5k

Then E(X ) is equal to:


Let X = time (in minutes) that lapses between the ringing of the bell at the end of a lecture and the actual time when the professor ends the lecture. Suppose X has p.d.f.

f(x) = `{(kx^2","      0 ≤ x ≤ 2), (0","         "othenwise"):}`

Then, the probability that the lecture ends within 1 minute of the bell ringing is ______


If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______


For a random variable X, if Var (X) = 5 and E (X2) = 21, the value of E (X) is ______


The probability distribution of a random variable X is given below. If its mean is 4.2, then the values of a and bar respectively 

X = x 1 2 3 4 5 6
P(X = x) a a a b b 0.3

The probability distribution of a random variable X is given below.

X = k 0 1 2 3 4
P(X = k) 0.1 0.4 0.3 0.2 0

The variance of X is ______


A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.


Two coins are tossed. Then the probability distribution of number of tails is.


The c.d.f. of a discrete r.v. x is 

x 0 1 2 3 4 5
F(x) 0.16 0.41 0.56 0.70 0.91 1.00

Then P(1 < x ≤ 4) = ______ 


The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


The p.d.f. of a continuous random variable X is

f(x) = 0.1 x, 0 < x < 5

= 0, otherwise

Then the value of P(X > 3) is ______ 


A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) = ______.


If f(x) = `k/2^x` is a probability distribution of a random variable X that can take on the values x = 0, 1, 2, 3, 4. Then, k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×