Advertisements
Advertisements
प्रश्न
Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
f (x) = k `(4 – x^2)`, for –2 ≤ x ≤ 2 and = 0 otherwise.
P (–0·5 < x or x > 0·5)
उत्तर
Since, f is the p.d.f. of X,
` int_(-∞)^∞ f (x) dx` = 1
∴ ` int_(-∞)^(-2) f (x) dx` +` int_(-2)^(2) f (x) dx` + `int_2^∞f(x) dx = 1`
= 0 + ` int_(-2)^(2) k (4 -x^2) dx + 0 = 1`
∴ k ` int_(-2)^2 (4 -x^2) dx + 0 = 1`
∴ k` [ 4x - x^3/3]_-2^2` = 1
∴ k `[(8-8/3)-(-8+8/3)]`= 1
∴ k`(16/3+16/3)` = 1
∴ k`(32/3)` = 1
∴ k = `3/32`
P (–0·5 < x or x > 0·5)
= P (x < –0·5) + P (x > – 0·5)
= `int_(-∞)^-0.5f (x) dx + int_(0.5)^∞f (x) dx`
=` int_(-∞)^-2 f (x) dx + int_(-2)^-0.5 f (x) dx +int_(0.5)^2f (x) dx + int_(2)^∞ f (x) dx`
= 0+` int_(-2)^(-1/2) k (4 -x^2) dx+ int_(1/2)^2 k (4 -x^2) dx` + 0
= ` k int_(-2)^(-1/2) (4 -x^2) dx+ k int_(1/2)^2 (4 -x^2) dx`
= `3/32[4x-(x^3)/3]_-2^(-1/2)+3/32[4x-(x^3)/3]_(1/2)^2` .......[∵ k =`3/32`]
= `3/32[(-2+1/24)-(-8+8/3)] + 3/32[(8-8/3)-(2-1/24)]`
= `3/32((-47)/24+16/3)+ 3/32(16/3-47/24)`
= `3/32((-47)/24+16/3+16/3-47/24)`
= `3/32((-47+128+128 -47)/24)`
= `3/32(162/24) = 81/128`
= 0.6328
Alternative Method :
P (x< – 0·5 or x > 0·5)
= 1 -P( - 0.5 ≤ x ≤ 0.5)
= 1 -` int_(-0.5)^0.5 f (x) dx `
= 1 - ` int_(-1/2)^(1/2) k (4 - x^2) dx`
= 1 - k ` int_(-1/2)^(1/2) (4 - x^2) dx`
= `1-3/32[4x-x^3/3]_(-1/2)^(1/2)` ......[∵ k = `3/32`]
= `1 - 3/32[(2-1/24)-(-2+1/24)]`
= `1 - 3/32(2-1/24+2-1/24)`
= `1 - 3/32(4-1/12)`
= `1 - 3/32 xx 47/12`
= `1 - 47/128`
= `(128-47)/128`
= `81/128`
= 0.6328
संबंधित प्रश्न
The following is the p.d.f. of continuous r.v.
f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find expression for c.d.f. of X
Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find
P( x < 1)
Given the p.d.f. of a continuous r.v. X ,
f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find P( x < –2)
Given the p.d.f. of a continuous r.v. X ,
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find P(1 < x < 2)
Given the p.d.f. of a continuous r.v. X ,
f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find P( X > 0)
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X=x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2+k |
k =
It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.
f(x) = `{(x^3/(64), "for" 0 ≤ x ≤ 4),(0, "otherwise."):}`
Find probability that X is between 1 and 3..
F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______
Fill in the blank :
The values of discrete r.v. are generally obtained by _______
Fill in the blank :
The value of continuous r.v. are generally obtained by _______
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
Amount of syrup prescribed by a physician.
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
Twelve of 20 white rats available for an experiment are male. A scientist randomly selects 5 rats and counts the number of female rats among them.
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
A highway safety group is interested in the speed (km/hrs) of a car at a check point.
c.d.f. of a discrete random variable X is
A coin is tossed 10 times. The probability of getting exactly six heads is ______.
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative distribution function
Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by
`f(x) = {{:((x^2 + 1)/k"," "for" x = 0"," 1"," 2),(0"," "otherwise"):}`
Find the value of k
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find the value of k
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find the probability mass function
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find P(X < 3)
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find P(X ≥ 2)
Choose the correct alternative:
Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.
Choose the correct alternative:
The probability mass function of a random variable is defined as:
x | – 2 | – 1 | 0 | 1 | 2 |
f(x) | k | 2k | 3k | 4k | 5k |
Then E(X ) is equal to:
A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is ______.
If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.
The probability distribution of a random variable X is given below. If its mean is 4.2, then the values of a and bar respectively
X = x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | a | a | a | b | b | 0.3 |
A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.
The c.d.f. of a discrete r.v. x is
x | 0 | 1 | 2 | 3 | 4 | 5 |
F(x) | 0.16 | 0.41 | 0.56 | 0.70 | 0.91 | 1.00 |
Then P(1 < x ≤ 4) = ______
The p.d.f. of a continuous random variable X is
f(x) = 0.1 x, 0 < x < 5
= 0, otherwise
Then the value of P(X > 3) is ______