Advertisements
Advertisements
प्रश्न
Two cards are randomly drawn, with replacement. from a well shuffled deck of 52 playing cards. Find the probability distribution of the number of aces drawn.
उत्तर
Let X denote the number of aces among the two cards drawn with replacement. Clearly, 0.1 and 2 are the possible values of X since the draws are with replacement, the outcomes of the two draws are independent of each other. Also. since there are 4 aces in the deck of 52 cards, P (an ace) = `4/52 = 1/13`, and P[a non-ace] = `12/13`.
Then P[X = 0] = P[non-ace and non-ace]
= `12/13 xx 12/13`
= `144/169`
P[X = 1] = P[ace and non-ace] + P[non-ace and ace]
= `1/13 xx 12/13 + 12/13 xx 1/13`
= `24/169`
and P[X = 2] = P[ace and ace]
= `1/13 xx 1/13`
= `1/169`
The required probability distribution is then as follows:
x | 0 | 1 | 2 |
P[X = x] | `144/169` | `24/169` | `1/169` |
APPEARS IN
संबंधित प्रश्न
In the p.m.f. of r.v. X
X | 1 | 2 | 3 | 4 | 5 |
P (X) | `1/20` | `3/20` | a | 2a | `1/20` |
Find a and obtain c.d.f. of X.
F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______
Fill in the blank :
The value of continuous r.v. are generally obtained by _______
A random variable X has the following probability distribution:
X = x | 0 | 1 | 2 | 3 |
P (X = x) | `1/10` | `1/2` | `1/5` | k |
Then the value of k is
Out of 100 people selected at random, 10 have common cold. If five persons selected at random from the group, then the probability that at most one person will have common cold is ______.
Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative distribution function
Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by
`f(x) = {{:((x^2 + 1)/k"," "for" x = 0"," 1"," 2),(0"," "otherwise"):}`
Find cumulative distribution function
Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by
`f(x) = {{:((x^2 + 1)/k"," "for" x = 0"," 1"," 2),(0"," "otherwise"):}`
Find P(X ≥ 1)
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find P(2 ≤ X < 5)
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find P(X > 3)
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find the probability mass function
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find P(X ≥ 2)
Choose the correct alternative:
Suppose that X takes on one of the values 0, 1 and 2. If for some constant k, P(X = i) = kP(X = i – 1) for i = 1, 2 and P(X = 0) = `1/7`. Then the value of k is
Choose the correct alternative:
Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.
Choose the correct alternative:
The probability mass function of a random variable is defined as:
x | – 2 | – 1 | 0 | 1 | 2 |
f(x) | k | 2k | 3k | 4k | 5k |
Then E(X ) is equal to:
If the c.d.f (cumulative distribution function) is given by F(x) = `(x - 25)/10`, then P(27 ≤ x ≤ 33) = ______.
If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.
The probability distribution of a random variable X is given below. If its mean is 4.2, then the values of a and bar respectively
X = x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | a | a | a | b | b | 0.3 |
A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.
The c.d.f. of a discrete r.v. x is
x | 0 | 1 | 2 | 3 | 4 | 5 |
F(x) | 0.16 | 0.41 | 0.56 | 0.70 | 0.91 | 1.00 |
Then P(1 < x ≤ 4) = ______
The p.d.f. of a continuous random variable X is
f(x) = 0.1 x, 0 < x < 5
= 0, otherwise
Then the value of P(X > 3) is ______
At random variable X – B(n, p), if values of mean and variance of X are 18 and 12 respectively, then total number of possible values of X are ______.
If f(x) = `k/2^x` is a probability distribution of a random variable X that can take on the values x = 0, 1, 2, 3, 4. Then, k is equal to ______.