Advertisements
Advertisements
प्रश्न
Two cards are randomly drawn, with replacement. from a well shuffled deck of 52 playing cards. Find the probability distribution of the number of aces drawn.
उत्तर
Let X denote the number of aces among the two cards drawn with replacement. Clearly, 0.1 and 2 are the possible values of X since the draws are with replacement, the outcomes of the two draws are independent of each other. Also. since there are 4 aces in the deck of 52 cards, P (an ace) = `4/52 = 1/13`, and P[a non-ace] = `12/13`.
Then P[X = 0] = P[non-ace and non-ace]
= `12/13 xx 12/13`
= `144/169`
P[X = 1] = P[ace and non-ace] + P[non-ace and ace]
= `1/13 xx 12/13 + 12/13 xx 1/13`
= `24/169`
and P[X = 2] = P[ace and ace]
= `1/13 xx 1/13`
= `1/169`
The required probability distribution is then as follows:
x | 0 | 1 | 2 |
P[X = x] | `144/169` | `24/169` | `1/169` |
APPEARS IN
संबंधित प्रश्न
Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
`"f(x)" = {("k"(4 - x^2) "for –2 ≤ x ≤ 2,"),(0 "otherwise".):}`
P(–1 < x < 1)
Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
f (x) = k `(4 – x^2)`, for –2 ≤ x ≤ 2 and = 0 otherwise.
P (–0·5 < x or x > 0·5)
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
An economist is interested the number of unemployed graduate in the town of population 1 lakh.
It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.
f(x) = `{(x^3/(64), "for" 0 ≤ x ≤ 4),(0, "otherwise."):}`
Find probability that X is between 1 and 3..
F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______
Fill in the blank :
The values of discrete r.v. are generally obtained by _______
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
A person on high protein diet is interested in the weight gained in a week.
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
Twelve of 20 white rats available for an experiment are male. A scientist randomly selects 5 rats and counts the number of female rats among them.
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
A highway safety group is interested in the speed (km/hrs) of a car at a check point.
c.d.f. of a discrete random variable X is
The probability distribution of a r.v. X is
X = x | -3 | -2 | -1 | 0 | 1 |
P(X = x) | 0.3 | 0.2 | 0.25 | 0.1 | 0.15 |
Then F (-1) = ?
A coin is tossed 10 times. The probability of getting exactly six heads is ______.
A random variable X has the following probability distribution:
X = x | 0 | 1 | 2 | 3 |
P (X = x) | `1/10` | `1/2` | `1/5` | k |
Then the value of k is
Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(X ≥ 6)
Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by
`f(x) = {{:((x^2 + 1)/k"," "for" x = 0"," 1"," 2),(0"," "otherwise"):}`
Find the value of k
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find the value of k
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find the probability mass function
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find P(X ≥ 2)
If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by
X = x | - 1.5 | -0.5 | 0.5 | 1.5 | 2.5 |
P(X = x) | 0.05 | 0.2 | 0.15 | 0.25 | 0.35 |
then, F(1.5) - F(- 0.5) = ?
If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.
For a random variable X, if Var (X) = 5 and E (X2) = 21, the value of E (X) is ______
The probability distribution of a random variable X is given below.
X = k | 0 | 1 | 2 | 3 | 4 |
P(X = k) | 0.1 | 0.4 | 0.3 | 0.2 | 0 |
The variance of X is ______
A random variable X has the following probability distribution:
X = xi | 1 | 2 | 3 | 4 |
P(X = xi) | 0.2 | 0.15 | 0.3 | 0.35 |
The mean and the variance are respectively ______.