Advertisements
Advertisements
प्रश्न
The current in a long solenoid of radius R and having n turns per unit length is given by i= i0 sin ωt. A coil having N turns is wound around it near the centre. Find (a) the induced emf in the coil and (b) the mutual inductance between the solenoid ant the coil.
उत्तर
Given:-
Radius of the long solenoid = R
Number of turns per unit length of the long solenoid = n
Current in the long solenoid, i = i0 sin ωt
Number of turns in the small solenoid = N
Radius of the small solenoid = R
The magnetic field inside the long solenoid is given by
B = μ0ni
Flux produced in the small solenoid because of the long solenoid, ϕ = (μ0ni) × (NπR2)
(a) The emf developed in the small solenoid is given by
\[e =\frac{d\phi}{dt} = \frac{d}{dt}( \mu_0 niN\pi R^2 )\]
`e = μ_0nN πR^2(di)/(dt)`
Substituting i = i0 sin ωt, we get
e = μ0nNπR2i0ω cos ωt
(b) Let the mutual inductance of the coils be m.
Flux ϕ linked with the second coil is given by
ϕ = (μ0 ni) × (NπR2)
The flux can also be written as
ϕ = mi
∴ (μ0 ni) × (NπR2) = mi
And,
m = πμ0nNR2
APPEARS IN
संबंधित प्रश्न
Define mutual inductance.
A 1.0 m long metallic rod is rotated with an angular frequency of 400 rad s−1 about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of 0.5 T parallel to the axis exists everywhere. Calculate the emf developed between the centre and the ring.
Explain the phenomenon of mutual induction.
A long solenoid of length l, cross-sectional area A and having N1 turns (primary coil), has a small coil of N2 turns (secondary coil) wound about its center. Determine the Mutual inductance (M) of the two coils.
The mutual inductance of two coils is 10 mH. If the current in one of the coil changes from 5 A to 1 A in 0.2 s, calculate the emf induced in the other coil. Also calculate the induced charge flowing through the coil if its resistance is 5 Ω.
Define Mutual Inductance.
In mutual induction, the main current remains same because ____________.
In an induction coil, the coefficient of mutual inductance is 6 henry. If a current of 10 ampere in the primary coil is cut-off in `1/1500"s"`, the e.m.f. at the terminals of the secondary coil will be ____________.
A coil of radius 'r' is placed on another coil (whose radius is 'R' and current flowing through it is changing) so that their centres coincide. (R>>r) if both the coils are coplanar then the mutual inductance between them is proportional to ______.
Alternating current of peak value `(2/pi)` ampere flows through the primary coil of transformer. The coefficient of mutual inductance between primary and secondary coil is 1 H. The peak e.m.f. induced in secondary coil is ______. (Frequency of a.c. = 50 Hz)
The mutual inductance between two coplanar concentric rings A and B of radii 'R1' and 'R2' placed in air when a current 'I' flows through ring A is (R1 >> R2) (µ0 = permeability of free space) ____________.
The coefficient of mutual inductance is 2H and induced e.m.f. across secondary is 2 kV. Current in the primary is reduced from 6 A and 3A. The time required for the change of current is ____________.
A solenoid is connected to a battery so that a steady current flows through it. If an iron core is inserted into the solenoid, the current will ______.
If number of turns in primary and secondary coils is increased to two times each, the mutual inductance ______.
Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon the ______.
Two conducting circular loops of radii R1 and R2 are placed in the same plane with their centres coinciding. If R1 > > R2, the mutual inductance M between them will be directly proportional to ______.
A toroid is a long coil of wire wound over a circular core. The major radius and cross-sectional radius of the toroid are R and r, respectively. The coefficient of mutual induction of the toroid is ______.
(The magnetic field in it is uniform, N = number of turns, R >> r, μ0 = permeability of free space)
Two circular loops, one of small radius r and the other of larger radius R, such that R >> r, are placed coaxially with centres coinciding. Obtain the mutual inductance of the arrangement.
State and define the SI unit of mutual inductance.