मराठी

The Decimal Expansion of the Rational Number 43 2 4 × 5 3 Will Terminate After How Many Places of Decimals? - Mathematics

Advertisements
Advertisements

प्रश्न

The decimal expansion of the rational number \[\frac{43}{2^4 \times 5^3}\] will terminate after how many places of decimals?

संख्यात्मक

उत्तर

We have,

`43/(2^4xx5^3)`

Theorem states: 

Let `x= p/q` be a rational number, such that the prime factorization of q is of the form  `2^nxx 5^m`, where mand n are non-negative integers.

Then, x has a decimal expression which terminates after k places of decimals, where k is the larger of mand n.

This is clear that the prime factorization of the denominator is of the form `2^nxx 5^m`,.

Hence, it has terminating decimal expansion which terminates after 4 places of decimal.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.7 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.7 | Q 11 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×